Skip to main content
Log in

Spatial distribution of planktonic ciliates in waters around the northeastern Antarctic Peninsula and the South Orkney Plateau

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The Antarctic Peninsula and adjacent region is one of the planet’s fastest warming areas and has experienced remarkable environmental change. Planktonic ciliates are sensitive to environmental change because of their short lifespans and limited mobility. However, not much research has been done on the distribution of planktonic ciliates and their relation to environmental factors in waters around the Antarctic Peninsula and the South Orkney Plateau. Here, we investigated planktonic ciliate distribution in different areas of the Antarctic Peninsula and the South Orkney Plateau region during 26 December 2015 and 11 January 2016. Tintinnids made up less than 10% and 15% of total planktonic ciliate abundance and biomass, respectively. Aloricate ciliates and tintinnids showed different vertical profiles, indicating their different responses to environmental change. In the Bransfield Strait, tintinnids mainly occurred in the south side of the strait. In the South Orkney Plateau with well-stratified water column, Laackmanniella naviculaefera occurred in the surface 0–25-m Summer Surface Water (SSW), while Cymatocylis cf. cristallina occurred in the 50–150-m Winter Water. Along a transect between the Central Basin and Eastern Basin, warmer Antarctic Circumpolar Current waters intruded southward and overlay the SSW of the Weddell Sea confluence. Consequently, L. naviculaefera was suppressed into deeper water than in the South Orkney Plateau. This study showed that the characteristic hydrography of the Antarctic Peninsula and the South Orkney Plateau shaped the distribution patterns of planktonic ciliates. Our results are helpful for understanding the future dynamics of pelagic ecosystems in this rapidly changing area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data of planktonic ciliates used in this study are available in Online Resource 2.

References

  • Alder VA (1999) Tintinnoinea. In: Boltovskoy D (ed) South Atlantic zooplankton. Backhuys, Leiden, pp 321–384

    Google Scholar 

  • Alder VA, Boltovskoy D (1991) Microplanktonic distributional patterns west of the Antarctic Peninsula, with special emphasis on the Tintinnids. Polar Biol 11:103–112. https://doi.org/10.1007/BF00234272

    Article  Google Scholar 

  • Atkinson A et al (2019) Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat Clim Change 9:142–147. https://doi.org/10.1038/s41558-018-0370-z

    Article  Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyerreil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263. https://doi.org/10.3354/meps010257

    Article  Google Scholar 

  • Bernard C, Rassoulzadegan F (1993) The role of picoplankton (cyanobacteria and plastidic picoflagellates) in the diet of tintinnids. J Plankton Res 15:361–373. https://doi.org/10.1093/plankt/15.4.361

    Article  Google Scholar 

  • Boltovskoy D, Alder VA (1989) Summer Weddell Sea microzooplankton: assemblage structure, distribution and abundance, with special emphasis on the Tintinnina. Polar Biol 9:447–456. https://doi.org/10.1007/BF00443232

    Article  Google Scholar 

  • Boltovskoy D, Alder VA (1992) Microzooplankton and tintinnid species-specific assemblage structures: patterns of distribution and year-to-year variations in the Weddell Sea (Antarctica). J Plankton Res 14:1405–1423. https://doi.org/10.1093/plankt/14.10.1405

    Article  Google Scholar 

  • Capriulo GM, Carpenter EJ (1983) Abundance, species composition and feeding impact of tintinnid microzooplankton in central Long Island Sound. Mar Ecol Prog Ser 10:277–288. https://doi.org/10.3354/meps010277

    Article  Google Scholar 

  • Carrasco JF, Bozkurt D, Cordero RR (2021) A review of the observed air temperature in the Antarctic Peninsula. Did the warming trend come back after the early 21st hiatus? Polar Sci 28:100653. https://doi.org/10.1016/j.polar.2021.100653

    Article  Google Scholar 

  • Catalan IA, Morales-Nin B, Company JB, Rotllant G, Palomera I, Emelianov M (2008) Environmental influences on zooplankton and micronekton distribution in the Bransfield Strait and adjacent waters. Polar Biol 31:691–707. https://doi.org/10.1007/s00300-008-0408-1

    Article  Google Scholar 

  • Davidson AT, Marchant HJ (1992) Protist abundance and carbon concentration during a Phaeocystis-Dominated bloom at an Antarctic coastal site. Polar Biol 12:387–395

    Article  Google Scholar 

  • Dietrich KS, Santora JA, Reiss CS (2021) Winter and summer biogeography of macrozooplankton community structure in the northern Antarctic Peninsula ecosystem. Prog Oceanogr 196:102610. https://doi.org/10.1016/j.pocean.2021.102610

    Article  Google Scholar 

  • Dolan JR, Montagnes DJ, Agatha S, Coats DW, Stoecker DK (2013) The biology and ecology of Tintinnid ciliates. Models for marine plankton. Wiley, Oxford

    Google Scholar 

  • Feng YB, Li D, Zhao J, Han ZB, Pan JM, Fan GJ, Zhang HS, Hu J, Zhang HF, Wu JQ, Zhu QH (2022) Environmental drivers of phytoplankton crops and taxonomic composition in northeastern Antarctic Peninsula adjacent sea area. Acta Oceanol Sin 41:99–117. https://doi.org/10.1007/s13131-021-1865-4

    Article  Google Scholar 

  • Ferreira A, Costa RR, Dotto TS, Kerr R, Tavano VM, Brito AC, Brotas V, Secchi ER, Mendes CRB (2020) Changes in Phytoplankton communities along the Northern Antarctic Peninsula: causes, impacts and research priorities. Front Mar Sci 7:576254. https://doi.org/10.3389/fmars.2020.576254

    Article  Google Scholar 

  • Garzio LM, Steinberg DK (2013) Microzooplankton community composition along the Western Antarctic Peninsula. Deep-Sea Res Pt I 77:36–49. https://doi.org/10.1016/j.dsr.2013.03.001

    Article  CAS  Google Scholar 

  • Gómez F (2007) Trends on the distribution of ciliates in the open Pacific Ocean. Acta Oecologica 32:188–202. https://doi.org/10.1016/j.actao.2007.04.002

    Article  Google Scholar 

  • Gordon AL (1967) Structure of Antarctic waters between 20°W and 170°W. In: Bushell VC (ed) Antarctic Map Folio Series 6. American Geographical Society, New York pp 1–10

  • Hada Y (1970) The protozoan plankton of the Antarctic and Subantarctic Seas. JARE Sci Rep Ser E 31:1–51

    Google Scholar 

  • Heinbokel JF, Beers JR (1979) Studies on the functional role of tintinnids in the Southern California Bight III. Grazing impact of natural assemblages. Mar Biol 52:23–32

    Article  Google Scholar 

  • Henley SF, Schofield OM, Hendry KR, Schloss IR, Steinberg DK, Moffat C, Peck LS, Costa DP, Bakker DC, Hughes C, Rozema PD, Ducklow HW, Abele D, Stefels J, Van Leeuwe MA, Brussaard CPD, Buma AGJ, Kohut J, Sahade R, Friedlaender AS, Stammerjohn SE, Venables HJ, Meredith MP (2019) Variability and change in the west Antarctic Peninsula marine system: research priorities and opportunities. Prog Oceanogr 173:208–237. https://doi.org/10.1016/j.pocean.2019.03.003

    Article  Google Scholar 

  • James MR, Hall JA (1995) Planktonic ciliated protozoa: their distribution and relationship to environmental variables in a marine coastal ecosystem. J Plankton Res 17:659–683

    Article  Google Scholar 

  • Jiang Y, Yang EJ, Kim SY, Kim YN, Lee S (2014) Spatial patterns in pelagic ciliate community responses to various habitats in the Amundsen Sea (Antarctica). Prog Oceanogr 128:49–59. https://doi.org/10.1016/j.pocean.2014.08.006

    Article  Google Scholar 

  • Kofoid CA, Campbell AS (1929) A conspectus of the marine fresh-water ciliate belonging to the suborder Tintinnoinea, with descriptions of new species principally from the Agassiz expedition to the Eastern Tropical Pacific 1904–1905. Univ Calif Publ Zool 34:1–403

    Google Scholar 

  • Kofoid CA, Campbell AS (1939) Reports on the scientific results of the expedition to the eastern tropical Pacific, in charge of Alexander Agassiz, by the U.S. Fish Commission steamer “Albatross”, from October 1904 to March 1905. The Ciliata: the Tintinnoinea. Bull Mus Comp Zool Harv Coll 84:1–473

    Google Scholar 

  • Laackmann H (1910) Die Tintinnodeen. Deutsche Südpolar-Expedition 1901–1903 im Auftrage des Reichsministeriums des Innern, vol 11. Zoologie III. Walter de Gruyter, Berlin, pp 341–496

  • Leakey RJG, Fenton N, Clarke A (1994) The annual cycle of planktonic ciliates in nearshore waters at Signy Island, Antarctica. J Plankton Res 16:841–856

    Article  Google Scholar 

  • Li HB, Zhao Y, Chen X, Zhang WC, Xu JH, Li J, Xiao T (2016) Interaction between neritic and warm water tintinnids in surface waters of East China Sea. Deep-Sea Res Pt II 124:84–92. https://doi.org/10.1016/j.dsr2.2015.06.008

    Article  CAS  Google Scholar 

  • Li HB, Chen X, Denis M, Zhao Y, Huang LF, Jiang ZJ, Zhang WC, Xiao T (2020) Seasonal and spatial variation of pelagic microbial food web structure in a semi-enclosed temperate bay. Front Mar Sci 7:589566. https://doi.org/10.3389/fmars.2020.589566

    Article  Google Scholar 

  • Li HB, Xu ZQ, Mou WX, Gao LB, Zu YC, Wang CF, Zhao Y, Zhang WC, Xiao T (2022) Planktonic ciliates in different water masses of Cosmonaut and Cooperation Seas (Indian sector of the Southern Ocean) during austral summer. Polar Biol 45:1059–1076. https://doi.org/10.1007/s00300-022-03057-w

    Article  Google Scholar 

  • Liang C, Li HB, Dong Y, Zhao Y, Tao ZC, Li CL, Zhang WC, Grégori G (2018) Planktonic ciliates in different water masses in open waters near Prydz Bay (East Antarctica) during austral summer, with an emphasis on tintinnid assemblages. Polar Biol 41:2355–2371. https://doi.org/10.1007/s00300-018-2375-5

    Article  Google Scholar 

  • Lin Y, Moreno C, Marchetti A, Ducklow H, Schofield O, Delage E, Meredith M, Li Z, Eveillard D, Chaffron S, Cassar N (2021) Decline in plankton diversity and carbon flux with reduced sea ice extent along the Western Antarctic Peninsula. Nat Commun 12:4948. https://doi.org/10.1038/s41467-021-25235-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loeb V, Siegel V, HolmHansen O, Hewitt R, Fraser W, Trivelpiece W, Trivelpiece S (1997) Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387:897–900. https://doi.org/10.1038/43174

    Article  CAS  Google Scholar 

  • Lynn DH (2008) Ciliated protozoa: characterization, classification, and guide to the literature, 3rd edn. Springer, Berlin, pp 1–455

    Google Scholar 

  • McBride MM, Stokke OS, Renner AHH, Krafft BA, Bergstad OA, Biuw M, Lowther AD, Stiansen JE (2021) Antarctic krill Euphausia superba: spatial distribution, abundance, and management of fisheries in a changing climate. Mar Ecol Prog Ser 668:185–214. https://doi.org/10.3354/meps13705

    Article  Google Scholar 

  • Mendes CRB, Tavano VM, Leal MC, de Souza MS, Brotas V, Garcia CAE (2013) Shifts in the dominance between diatoms and cryptophytes during three late summers in the Bransfield Strait (Antarctic Peninsula). Polar Biol 36:537–547. https://doi.org/10.1007/s00300-012-1282-4

    Article  Google Scholar 

  • Mendes CRB, Tavano VM, Dotto TS, Kerr R, de Souza MS, Garcia CAE, Secchi ER (2018) New insights on the dominance of cryptophytes in Antarctic coastal waters: a case study in Gerlache Strait. Deep-Sea Res Pt II 149:161–170. https://doi.org/10.1016/j.dsr2.2017.02.010

    Article  CAS  Google Scholar 

  • Montagnes DJS, Allen J, Brown L, Bulit C, Davidson R, Fielding S, Heath M, Holliday NP, Rasmussen J, Sanders R, Waniek JJ, Wilson D (2010) Role of ciliates and other microzooplankton in the Irminger Sea (NW Atlantic Ocean). Mar Ecol Prog Ser 411:101–115. https://doi.org/10.3354/meps08646

    Article  Google Scholar 

  • Monti-Birkenmeier M, Diociaiuti T, Badewien TH, Schulz AC, Friedrichs A, Meyer B (2021) Spatial distribution of microzooplankton in different areas of the northern Antarctic Peninsula region, with an emphasis on tintinnids. Polar Biol 44:1749–1764. https://doi.org/10.1007/s00300-021-02910-8

    Article  Google Scholar 

  • Paranjape M, Gold K (1982) Cultivation of marine pelagic protozoa. Ann Inst Oceanogr Paris 58: 143–150

  • Pierce RW, Turner JT (1992) Ecology of planktonic ciliates in marine food webs. Rev Aquat Sci 6:139–181

    Google Scholar 

  • Pitta P, Giannakourou A (2000) Planktonic ciliates in the oligotrophic Eastern Mediterranean: vertical, spatial distribution and mixotrophy. Mar Ecol Prog Ser 194:269–282. https://doi.org/10.3354/meps194269

    Article  Google Scholar 

  • Putt M, Stoecker DK (1989) An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol Oceanogr 34:1097–1103

    Article  Google Scholar 

  • Reiss CS, Hinke JT, Watters GM (2020) Demographic and maturity patterns of Antarctic krill (Euphausia superba) in an overwintering hotspot. Polar Biol 43:1233–1245. https://doi.org/10.1007/s00300-020-02704-4

    Article  Google Scholar 

  • Romano F, Symiakaki K, Pitta P (2021) Temporal variability of planktonic ciliates in a coastal oligotrophic environment: mixotrophy, size classes and vertical distribution. Front Mar Sci 8:641589. https://doi.org/10.3389/fmars.2021.641589

    Article  Google Scholar 

  • Sanchez N, Reiss CS, Holm-Hansen O, Hewes CD, Bizsel KC, Ardelan MV (2019) Weddell-Scotia Confluence effect on the iron distribution in waters surrounding the South Shetland (Antarctic Peninsula) and South Orkney (Scotia Sea) Islands during the austral summer in 2007 and 2008. Front Mar Sci 6:00771. https://doi.org/10.3389/fmars.2019.00771

    Article  Google Scholar 

  • Sangrà P, Gordo C, Hernandez-Arencibia M, Marrero-Diaz A, Rodriguez-Santana A, Stegner A, Martinez-Marrero A, Pelegri JL, Pichon T (2011) The Bransfield current system. Deep-Sea Res Pt I 58:390–402. https://doi.org/10.1016/j.dsr.2011.01.011

    Article  Google Scholar 

  • Simó R, Salo V, Almeda R, Movilla J, Trepat I, Saiz E, Calbet A (2018) The quantitative role of microzooplankton grazing in dimethylsulfide (DMS) production in the NW Mediterranean. Biogeochemistry 141:125–142. https://doi.org/10.1007/s10533-018-0506-2

    Article  Google Scholar 

  • Stoecker DK, Verity PG, Michaels AE, Davis LH (1987) Feeding by larval and postlarval ctenophores on microzooplankton. J Plankton Res 9:667–683

    Article  Google Scholar 

  • Suzuki T, Taniguchi A (1995) Sinking rate of loricae of some common tintinnid ciliates. Fish Oceanogr 4:257–263. https://doi.org/10.1111/j.1365-2419.1995.tb00149.x

    Article  Google Scholar 

  • Thompson AF, Heywood KJ, Thorpe SE, Renner AHH, Trasvina A (2009) Surface circulation at the tip of the Antarctic Peninsula from drifters. J Phys Oceanogr 39:3–26. https://doi.org/10.1175/2008jpo3995.1

    Article  Google Scholar 

  • van Caspel M, Hellmer HH, Mata MM (2018) On the ventilation of Bransfield Strait deep basins. Deep-Sea Res Pt II 149:25–30. https://doi.org/10.1016/j.dsr2.2017.09.006

    Article  Google Scholar 

  • Verity PG, Langdon C (1984) Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J Plankton Res 6:859–868. https://doi.org/10.1093/plankt/6.5.859

    Article  CAS  Google Scholar 

  • Wang CF, Li HB, Dong Y, Zhao L, Grégori G, Zhao Y, Zhang WC, Xiao T (2021a) Planktonic ciliate trait structure variation over Yap, Mariana, and Caroline seamounts in the tropical western Pacific Ocean. J Oceanol Limnol 39:1705–1717. https://doi.org/10.1007/s00343-021-0476-4

    Article  Google Scholar 

  • Wang CF, Xu MQ, Xuan J, Li HB, Zheng S, Zhao Y, Zhang WC, Xiao T (2021b) Impact of the warm eddy on planktonic ciliate, with an emphasis on tintinnids as bioindicator species. Ecol Indic 133:108441. https://doi.org/10.1016/j.ecolind.2021.108441

    Article  Google Scholar 

  • Wasik A, Mikolajczyk E (1994) Annual cycle of tintinnids in Admiralty Bay with an emphasis on seasonal variability in Cymatocylis affinis/convallaria lorica morphology. J Plankton Res 16:1–8

    Article  Google Scholar 

  • Whitworth T, Nowlin WD, Orsi AH, Locarnini RA, Smith SG (1994) Weddell Sea Shelf Water in the Bransfield Strait and Weddell-Scotia Confluence. Deep-Sea Res Pt I 41:629–641. https://doi.org/10.1016/0967-0637(94)90046-9

    Article  Google Scholar 

  • Wickham SA, Steinmair U, Kamennaya N (2011) Ciliate distributions and forcing factors in the Amundsen and Bellingshausen Seas (Antarctic). Aquat Microb Ecol 62:215–230. https://doi.org/10.3354/ame01468

    Article  Google Scholar 

  • Yang EJ, Choi JK, Hyun JH (2008) Seasonal variation in the community and size structure of nano- and microzooplankton in Gyeonggi Bay, Yellow Sea. Estuar Coast Shelf Sci 77:320–330. https://doi.org/10.1016/j.ecss.2007.09.034

    Article  Google Scholar 

  • Yu Y, Zhang WC, Feng MP, Zhao Y, Zhang CX, Zhou F, Xiao T (2016) Differences in the vertical distribution and response to freshwater discharge between aloricate ciliates and tintinnids in the East China Sea. J Mar Syst 154:103–109. https://doi.org/10.1016/j.jmarsys.2015.02.005

    Article  Google Scholar 

  • Zhang WC, Feng MP, Zhang CX, Xiao T (2012) An illustrated guide to contemporary Tintinnids in the world. Science Press, Beijing

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Polar Special Program “Impact and Response of Antarctic Seas to Climate” (IRASCC 01-02-01D) and the National Natural Science Foundation of China (41706192). This work was also supported by the Ministry of Natural Resources of the People’s Republic of China. We thank the 32nd CHINARE Antarctic expedition for providing logistical support and environmental data. We thank the crew on the R/V “XUELONG” for their support and assistance during sampling. We thank Natalie Kim, PhD, from Liwen Bianji (Edanz) (www.liwenbianji.cn/), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

HL: Sampling Counting, Data Curation, Writing-Original Draft. CL: Investigation, Sampling Counting, Data Curation. GY: Investigation. CW: Data Curation. WZ: Conceptualization, Supervision, Project administration, Reviewing and editing.

Corresponding author

Correspondence to Wuchang Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 13 kb)

Supplementary file2 (XLSX 35 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Liang, C., Yang, G. et al. Spatial distribution of planktonic ciliates in waters around the northeastern Antarctic Peninsula and the South Orkney Plateau. Polar Biol 46, 623–637 (2023). https://doi.org/10.1007/s00300-023-03152-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-023-03152-6

Keywords

Navigation