Skip to main content

Advertisement

Log in

Neuromorphological disparity in deep-living sister species of the Antarctic fish genus Trematomus

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Because sister species share a phenotypic axis, they hold morphological and ecological traits in common and, when sympatric, are ideal subjects for examining the extent of morphological divergence associated with the non-shared ecological parameters of the niche. Trematomus lepidorhinus and T. loennbergii have overlapping depth ranges of > 1000 m and occupy the deep shelf-upper slope niche in the waters of East Antarctica, an area where glacial troughs and their 1000–1500 m-deep landward basins (innershelf depressions) encompass 40% of the sea floor. The sense organ and brain divergence between the two species at the gross anatomical and histological levels involves differences in: number of olfactory lamellae, composition of the photoreceptor array and the number of retinal cells, size of the cephalic lateral line pores, and overall size of the brain and degree of development of different brain regions. Size and shape of the sagittal otoliths also differ. The morphology is unequivocally differentiating for habitat depths and conclusively documents a shift toward reliance on non-visual senses in T. loennbergii, consistent with collection data indicating this species lives at greater depths than T. lepidorhinus. Depths of peak abundances—200–500 m for T. lepidorhinus and 600–800 m for T. loennbergii—are the major differentiating parameter, with the ≈300 m differential between the peaks providing considerable, although not absolute, habitat separation. This is also reflected in the greater absolute abundances of the shallower-living T. lepidorhinus in trawl catches. Only T. loennbergii is found near the floors of 1000–1500 m-deep innershelf depressions, a distinctive microhabitat on the high latitude shelf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

reproduced with permission from Fishes of the Southern Ocean (1990, Figs. 46–47, pp. 321–322), © South African Institute for Aquatic Biodiversity. Illustrations by Voorvelt from DeWitt et al. (1990)

Fig. 3

modified from Fig. 12 in Marine Geology, 2014, 352:4–24, Harris et al. Geomorphology of the oceans, with permission from Elsevier B.V

Fig. 4

modified from IBCSO, available at www.ibcso.org (Arndt et al. 2013)

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Anderson JB (1999) Antarctic marine geology. Cambridge University Press, Cambridge

    Google Scholar 

  • Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84:511–525. https://doi.org/10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2

    Article  Google Scholar 

  • Andriashev AP (1965) A general review of the Antarctic fish fauna. In: van Oye P, van Mieghem J (eds) Biogeography and Ecology in Antarctica, Monographiae Biologicae. Junk, The Hague, pp 491–550

    Google Scholar 

  • Andriashev AP (1977) Some additions to schemes of the vertical zonation of marine bottom fauna. In: Llano GA (ed) Adaptations within Antarctic Ecosystems. Smithsonian Institution, Washington, pp 351–360

    Google Scholar 

  • Angel MV (1997) What is the deep-sea? In: Randall DJ, Farrell AP (eds) Deep-sea fishes, vol 16. Fish physiology. Academic Press, San Diego, pp 1–41

    Google Scholar 

  • Arndt JE et al (2013) The international bathymetric chart of the Southern Ocean (IBCSO) version 1.0—A new bathymetric compilation covering circum-Antarctic waters. Geophys Res Lett 40:3111–3117. https://doi.org/10.1002/grl.50413

    Article  Google Scholar 

  • Baker CF, Montgomery JC (1999) Lateral line mediated rheotaxis in the Antarctic fish Pagothenia borchgrevinki. Polar Biol 21:305–309

    Google Scholar 

  • Burns JH, Strauss SY (2011) More closely related species are more ecologically similar in an experimental test. Proc Nat Acad Sci USA 108:5302–5307. https://doi.org/10.1073/pnas.1013003108

    Article  PubMed  Google Scholar 

  • Causse R et al (2011) Demersal ichthyofaunal shelf communities from the Dumont d’Urville Sea (East Antarctica). Polar Sci 5:272–285

    Google Scholar 

  • Chernova NV, Eastman JT (2001) Two new species of snailfish genus Paraliparis (Pisces: Liparidae) from the Ross Sea, Antarctica. J Fish Biol 59:92–104. https://doi.org/10.1006/jfbi.2001.1623

    Article  Google Scholar 

  • Clark G (1981) Staining procedures, 4th edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Clark MR, Dunn MR, McMillan PJ, Pinkerton MH, Stewart A, Hanchet SM (2010) Latitudinal variation of demersal fish assemblages in the western Ross Sea. Antarct Sci 22:782–792

    Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial (plymouth routines in multivariate ecological research). PRIMER-E, Plymouth

    Google Scholar 

  • Coombs S, Montgomery JC (1992) Fibers innervating different parts of the lateral line system of an Antarctic notothenioid, Trematomus bernacchii, have similar frequency responses, despite large variation in peripheral morphology. Brain Behav Evol 40:217–233

    CAS  PubMed  Google Scholar 

  • Coombs S, Janssen J, Webb JF (1988) Diversity of lateral line systems: Evolutionary and functional considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer-Verlag, New York, pp 553–593

    Google Scholar 

  • Country MW (2017) Retinal metabolism: a comparative look at energetics in the retina. Brain Res 1672:50–57. https://doi.org/10.1016/j.brainres.2017.07.025

    Article  CAS  PubMed  Google Scholar 

  • Deng XH, Wagner H-J, Popper AN (2013) Interspecific variations of inner ear structure in the deep-sea fish family Melamphaidae. Anat Rec-Adv Integr Anat Evol Biol 296:1064–1082. https://doi.org/10.1002/ar.22703

    Article  Google Scholar 

  • DeWitt HH (1971) Coastal and deep-water benthic fishes of the Antarctic. In: Bushnell VC (ed) Antarctic Map Folio Series, Folio 15. American Geographical Society, New York, pp 1–10

    Google Scholar 

  • Eastman JT (1985) Pleuragramma antarcticum (Pisces, Nototheniidae) as food for other fishes in McMurdo Sound, Antarctica. Polar Biol 4:155–160

    Google Scholar 

  • Eastman JT (1988) Ocular morphology in Antarctic notothenioid fishes. J Morphol 196:283–306

    PubMed  Google Scholar 

  • Eastman JT (2017) Bathymetric distributions of notothenioid fishes. Polar Biol 40:2077–2095. https://doi.org/10.1007/s00300-017-2128-x

    Article  Google Scholar 

  • Eastman JT (2019) An analysis of maximum body size and designation of size categories for notothenioid fishes. Polar Biol 42:1131–1145. https://doi.org/10.1007/s00300-019-02502-7

    Article  Google Scholar 

  • Eastman JT, Hubold G (1999) The fish fauna of the Ross Sea, Antarctica. Antarct Sci 11:293–304

    Google Scholar 

  • Eastman JT, Lannoo MJ (2003a) Diversification of brain and sense organ morphology in Antarctic dragonfishes (Perciformes: Notothenioidei: Bathydraconidae). J Morphol 258:130–150

    PubMed  Google Scholar 

  • Eastman JT, Lannoo MJ (2003b) Anatomy and histology of the brain and sense organs of the Antarctic plunderfish Dolloidraco longedorsalis (Perciformes: Notothenioidei: Artedidraconidae), with comments on the brain morphology of other artedidraconids and closely related harpagiferids. J Morphol 255:358–377

    PubMed  Google Scholar 

  • Eastman JT, Lannoo MJ (2004) Brain and sense organ anatomy and histology in hemoglobinless Antarctic icefishes (Perciformes: Notothenioidei: Channichthyidae). J Morphol 260:117–140

    PubMed  Google Scholar 

  • Eastman JT, Lannoo MJ (2008) Brain and sense organ anatomy and histology of the Falkland Islands mullet, Eleginops maclovinus (Eleginopidae), the sister group of the Antarctic notothenioid fishes (Perciformes: Notothenioidei). J Morphol 269:84–103

    PubMed  Google Scholar 

  • Eastman JT, Lannoo MJ (2011) Divergence of brain and retinal anatomy and histology in pelagic Antarctic notothenioid fishes of the sister taxa Dissostichus and Pleuragramma. J Morphol 272:419–441

    PubMed  Google Scholar 

  • Ekau W (1988) Ökomorphologie nototheniider Fische aus dem Weddellmeer, Antarktis. Ber Polarforsch 51:1–140 (In German; English summary)

  • Ekau W (1990) Demersal fish fauna of the Weddell Sea, Antarctica. Antarct Sci 2:129–137

    Google Scholar 

  • Ekau W (1991) Morphological adaptations and mode of life in high antarctic fish. In: di Prisco G, Maresca B, Tota B (eds) Biology of antarctic fish. Springer, Berlin, pp 23–39

    Google Scholar 

  • Ekau W, Gutt J (1991) Notothenioid fishes from the Weddell Sea and their habitat, observed by underwater photography and television. Proc NIPR Symp Polar Biol Tokyo No 4:36–49

    Google Scholar 

  • Ferrando S et al (2019) Olfaction in the Antarctic toothfish Dissostichus mawsoni: clues from the morphology and histology of the olfactory rosette and bulb. Polar Biol 42:1081–1091. https://doi.org/10.1007/s00300-019-02496-2

    Article  Google Scholar 

  • Fine ML, Horn MH, Cox B (1987) Acanthonus armatus, a deep-sea teleost with a minute brain and large ears. Proc R Soc Lond 230B:257–265

    Google Scholar 

  • Gutt J, Ekau W (1996) Habitat partitioning of dominant high Antarctic demersal fish in the Weddell Sea and Lazarev Sea. J Exp Mar Biol Ecol 206:25–37

    Google Scholar 

  • Gutt J, Ekau W, Gorny M (1994) New results on the fish and shrimp fauna of the Weddell Sea and Lazarev Sea (Antarctic). Proc Natl Inst Polar Res Symp Polar Biol No 7:91–102

    Google Scholar 

  • Hanchet SM, Stewart AL, McMillan PJ, Clark MR, O’Driscoll RL, Stevenson ML (2013) Diversity, relative abundance, new locality records, and updated fish fauna of the Ross Sea region. Antarct Sci 25:619–636

    Google Scholar 

  • Harris PT, Macmillan-Lawler M, Rupp J, Baker EK (2014) Geomorphology of the oceans. Mar Geol 352:4–24. https://doi.org/10.1016/j.margeo.2014.01.011

    Article  Google Scholar 

  • Hecht T (1990) Otoliths: an introduction to their morphology and use in the identification of Southern Ocean fishes. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. J.L.B, Smith Institute of Ichthyology, Grahamstown, pp 64–69

    Google Scholar 

  • Herbert NA, Macdonald JA, Wells RMG, Davison W (2003) A difference in optomotor behaviour of two Antarctic nototheniid fishes is correlated with the presence of a choroid rete mirabile and Root effect. Polar Biol 26:411–415

    Google Scholar 

  • Herbert NA, Steffensen JF, Jordan AD (2004) The interrelated effects of body size and choroid rete development on the ocular O2 partial pressure of Atlantic (Gadus morhua) and Greenland cod (Gadus ogac). Polar Biol 27:748–752

    Google Scholar 

  • Hubold G (1991) Ecology of notothenioid fish in the Weddell Sea. In: di Prisco G, Maresca B, Tota B (eds) Biology of Antarctic Fish. Springer, Berlin, pp 3–22

    Google Scholar 

  • Hubold G (1992) Zur ökologie der fische im Weddellmeer. Ber Polarforsch 103:1–157 (In German; English summary)

  • Ingram T (2011) Speciation along a depth gradient in a marine adaptive radiation. Proc R Soc B 278:613–618

    PubMed  Google Scholar 

  • Iglesias TL, Dornburg A, Brandley MC, Alfaro ME, Warren DL (2015) Life in the unthinking depths: energetic constraints on encephalization in marine fishes. J Evol Biol 28:1080–1090. https://doi.org/10.1111/jeb.12631

    Article  CAS  PubMed  Google Scholar 

  • Iwata H, Ukai Y (2002) SHAPE: a computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. J Hered 93:384–385. https://doi.org/10.1093/jhered/93.5.384

    Article  CAS  PubMed  Google Scholar 

  • Janko K, Marshall C, Musilová Z, Van Houdt J, Couloux A, Cruaud C, Lecointre G (2011) Multilocus analyses of an Antarctic fish species flock (Teleostei, Notothenioidei, Trematominae): Phylogenetic approach and test of the early-radiation event. Mol Phylogen Evol 60:305–316

    Google Scholar 

  • Janssen J (1996) Use of the lateral line and tactile senses in feeding in four Antarctic nototheniid fishes. Environ Biol Fish 47:51–64

    Google Scholar 

  • Klingenberg CP, Ekau W (1996) A combined morphometric and phylogenetic analysis of an ecomorphological trend: pelagization in Antarctic fishes (Perciformes: Nototheniidae). Biol J Linn Soc 59:143–177

    Google Scholar 

  • Kuhl FP, Giardina CR (1982) Elliptic Fourier features of a closed contour. Comp Graphics Image Processing 18:236–258

    Google Scholar 

  • Kuhn KL, Near TJ (2009) Phylogeny of Trematomus (Notothenioidei: Nototheniidae) inferred from mitochondrial and nuclear gene sequences. Antarct Sci 21:565–570

    Google Scholar 

  • Kuhn KL, Near TJ, Detrich HW, Eastman JT (2011) Biology of the Antarctic dragonfish Vomeridens infuscipinnis (Notothenioidei: Bathydraconidae). Antarct Sci 23:18–26

    Google Scholar 

  • Knust R, Schröder M (2014) The expedition PS82 of the research vessel ‘“Polarstern”’ to the southern Weddell Sea in 2013/14. Ber Polarforsch Meeresforsch 680:106–109

    Google Scholar 

  • La Mesa M, Vacchi M, Castelli A, Diviacco G (1997) Feeding ecology of two nototheniid fishes, Trematomus hansoni and Trematomus loennbergii, from Terra Nova Bay, Ross Sea. Polar Biol 17:62–68

    Google Scholar 

  • La Mesa M, Piepenburg D, Pineda-Metz SEA, Riginella E, Eastman JT (2019) Spatial distribution and habitat preferences of demersal fish assemblages in the southeastern Weddell Sea (Southern Ocean). Polar Biol 42:1025–1040. https://doi.org/10.1007/s00300-019-02495-3

    Article  Google Scholar 

  • Lannoo MJ, Eastman JT (2000) Nervous and sensory system correlates of an epibenthic evolutionary radiation in Antarctic notothenioid fishes, genus Trematomus (Perciformes; Nototheniidae). J Morphol 245:67–79

    CAS  PubMed  Google Scholar 

  • Lautredou A-C, Bonillo C, Denys G, Cruaud C, Ozouf-Costaz C, Lecointre G, Dettai A (2010) Molecular taxonomy and identification within the Antarctic genus Trematomus (Notothenioidei, Teleostei): How valuable is barcoding with COI. Polar Sci 4:333–352

    Google Scholar 

  • Levine JM, HilleRisLambers J (2009) The importance of niches for the maintenance of species diversity. Nature 461:254–257. https://doi.org/10.1038/nature08251

    Article  CAS  PubMed  Google Scholar 

  • Lim H, Sorensen PW (2012) Common carp implanted with prostaglandin F-2 alpha release a sex pheromone complex that attracts conspecific males in both the laboratory and field. J Chem Ecol 38:127–134. https://doi.org/10.1007/s10886-012-0062-5

    Article  CAS  PubMed  Google Scholar 

  • Lombarte A, Palmer M, Matallanas J, Gómez-Zurita J, Morales-Nin B (2010) Ecomorphological trends and phylogenetic inertia of otolith sagittae in Nototheniidae. Environ Biol Fish 89:607–618. https://doi.org/10.1007/s10641-010-9673-2

    Article  Google Scholar 

  • Love MS, Yoklavich M, Thorsteinson L (2002) The rockfishes of the Northeast Pacific. University of California Press, Berkeley

    Google Scholar 

  • Mark F, Koschnick N, Scheuffele H, Papetti C, Lucassen M, Strobel A, Burkhardt-Holm P, Segner H, Riginella E, Mazzoldi C, La Mesa M, Christiansen H (2016) Cold adaptation vs. sensitivity to climate change and pollution in Antarctic Notothenioids: physiological plasticity, genetic regulation, immunology and reproductive traits. Ber Polarforsch 700:73–80

    Google Scholar 

  • Marshall NB (1979) Deep-sea biology: developments and perspectives. Garland STPM, New York

    Google Scholar 

  • Merrett NR, Haedrich RL (1997) Deep-sea demersal fish and fisheries. Chapman & Hall, London

    Google Scholar 

  • Miyazaki T, Iwami T, Yamauchi M, Somiya H (2001) “Accessory corner cones” as putative UV-sensitive photoreceptors in the retinas of seven adult nototheniid fishes. Polar Biol 24:628–632

    Google Scholar 

  • Montgomery JC (1997) An ontogenetic shift in the use of visual and non-visual senses in Antarctic notothenioid fishes. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge, pp 217–220

    Google Scholar 

  • Montgomery JC, Macdonald JA (1987) Sensory tuning of lateral line receptors in Antarctic fish to the movements of planktonic prey. Science 235:195–196

    CAS  PubMed  Google Scholar 

  • Montgomery J, Pankhurst N (1997) Sensory physiology. In: Randall DJ, Farrell AP (eds) Deep-sea fishes. Academic Press, San Diego, pp 325–349

    Google Scholar 

  • Montgomery JC, Wells RMG (1993) Recent advances in the ecophysiology of Antarctic notothenioid fishes: Metabolic capacity and sensory performance. In: Rankin JC, Jensen FB (eds) Fish ecophysiology. Chapman and Hall, London, pp 341–374

    Google Scholar 

  • Montgomery J, Coombs S, Janssen J (1994) Form and function relationships in lateral line systems: comparative data from six species of Antarctic notothenioid fish. Brain Behav Evol 44:299–306

    CAS  PubMed  Google Scholar 

  • Montgomery JC, Diebel JC, Halstead MBD, Downer J (1999) Olfactory search tracks in the Antarctic fish Trematomus bernacchii. Polar Biol 21:151–154

    Google Scholar 

  • Near TJ, Dornburg A, Kuhn KL, Eastman JT, Pennington JN, Patarnello T, Zane L, Fernández DA, Jones CD (2012) Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proc Natl Acad Sci USA 109:3434–3439. https://doi.org/10.1073/pnas.1115169109

    Article  PubMed  Google Scholar 

  • Near TJ, MacGuigan DJ, Parker E, Struthers CD, Jones CD, Dornburg A (2018) Phylogenetic analysis of Antarctic notothenioids illuminates the utility of RADseq for resolving Cenozoic adaptive radiations. Mol Phylogenet Evol 129:268–279. https://doi.org/10.1016/j.ympev.2018.09.001

    Article  CAS  PubMed  Google Scholar 

  • Nicol JAC (1989) The eyes of fishes. Oxford University Press, Oxford

    Google Scholar 

  • O’Brien PE et al (2016) Submarine glacial landforms on the cold East Antarctic margin. Geol Soc Lond Mem 46:501–508. https://doi.org/10.1144/M46.172

    Article  Google Scholar 

  • Pakhomov EA (1998) Feeding plasticity of the Antarctic fish Trematomus hansoni Boulenger, 1902 (Pisces: Nototheniidae): the influence of fishery waste on the diet. Polar Biol 19:289–292

    Google Scholar 

  • Pankhurst NW, Montgomery JC (1989) Visual function in four Antarctic nototheniid fishes. J Exp Biol 142:311–324

    Google Scholar 

  • Pankhurst NW, Montgomery JC (1990) Ontogeny of vision in the Antarctic fish Pagothenia borchgrevinki (Nototheniidae). Polar Biol 10:419–422

    Google Scholar 

  • Paxton JR (2000) Fish otoliths: do sizes correlate with taxonomic group, habitat and/or luminescence? Phil Trans R Soc Lond B 355:1299–1303. https://doi.org/10.1098/rstb.2000.0688

    Article  CAS  Google Scholar 

  • Platt C, Popper AN, Fay RR (1989) The ear as part of the octavolateralis system. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York, pp 633–651

    Google Scholar 

  • Pointer MA et al (2005) Adaptations to an extreme environment: retinal organisation and spectral properties of photoreceptors in Antarctic notothenioid fish. J Exp Biol 208:2363–2376. https://doi.org/10.1242/jeb.01647

    Article  CAS  PubMed  Google Scholar 

  • Popper AN, Hawkins AD (2019) An overview of fish bioacoustics and the impacts of anthropogenic sounds on fishes. J Fish Biol 94:692–713. https://doi.org/10.1111/jfb.13948

    Article  PubMed  PubMed Central  Google Scholar 

  • Popper AN, Ramcharitar J, Campana SE (2005) Why otoliths? Insights from inner ear physiology and fisheries biology. Mar Freshw Res 56:497–504. https://doi.org/10.1071/mf04267

    Article  Google Scholar 

  • Post AL et al (2014) Chapter 4. Environmental setting. In: De Broyer C (ed) Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp 46–64

    Google Scholar 

  • Riginella E, Mazzoldi C, Rasotto MB, La Mesa M (2014) Reproductive traits in Antarctic fish: a comparative analysis of notothenioidei. Ber Polarforsch 680:106–109

    Google Scholar 

  • Roshchin EA (1991) Aspects of the life cycle of Trematomus eulepidotus (Nototheniidae) in the Indian Ocean sector of the Antarctic. J Ichthyol 31:1–11

    Google Scholar 

  • Sanchez S, Dettaï A, Bonillo C, Ozouf-Costaz C, Detrich HW III, Lecointre G (2007) Molecular and morphological phylogenies of the Antarctic teleostean family Nototheniidae, with emphasis on the Trematominae. Polar Biol 30:155–166

    Google Scholar 

  • Schröder M (2016) The expedition PS96 of the research vessel ‘“Polarstern”’ to the southern Weddell Sea in 2015/2016. Ber Polarforsch Meeresforsch 700:73–80

    Google Scholar 

  • Schwarzbach W (1988) Die Fischfauna des östlichen und südlichen Weddellmeeres: geographische Verbreitung, Nahrung und trophische Stellung der Fischarten. Ber Polarforsch 54:1–94 (In German; English summary)

  • Schwarzhans W (2019) Reconstruction of the fossil marine bony fish fauna (Teleostei) from the Eocene to Pleistocene of New Zealand by means of otoliths. Mem Soc ital sci nat Mus civ stor nat Milano 46:1–326

    Google Scholar 

  • Stein DL (2012) Snailfishes (family Liparidae) of the Ross Sea, Antarctica, and closely adjacent waters. Zootaxa 3285:1–120

    Google Scholar 

  • Tracey SR, Lyle JM, Duhamel G (2006) Application of elliptical Fourier analysis of otolith form as a tool for stock identification. Fish Res 77:138–147. https://doi.org/10.1016/j.fishres.2005.10.013

    Article  Google Scholar 

  • Tuset VM, Lombarte A, González JA, Pertusa JF, Lorente MJ (2003) Comparative morphology of the sagittal otolith in Serranus spp. J Fish Biol 63:1491–1504. https://doi.org/10.1046/j.1095-8649.2003.00262.x

    Article  Google Scholar 

  • Vrieze LA, Bergstedt RA, Sorensen PW (2011) Olfactory-mediated stream-finding behavior of migratory adult sea lamprey (Petromyzon marinus). Can J Fish Aquat Sci 68:523–533. https://doi.org/10.1139/f10-169

    Article  Google Scholar 

  • Wagner H-J (2001a) Sensory brain areas in mesopelagic fishes. Brain Behav Evol 57:117–133

    CAS  PubMed  Google Scholar 

  • Wagner H-J (2001b) Brain areas in abyssal demersal fishes. Brain Behav Evol 57:301–316

    CAS  PubMed  Google Scholar 

  • Wagner H-J (2002) Sensory brain areas in three families of deep-sea fish (slickheads, eels and grenadiers): comparison of mesopelagic and demersal species. Mar Biol 141:807–817

    Google Scholar 

  • Warrant EJ, Locket NA (2004) Vision in the deep sea. Biol Rev 79:671–712

    PubMed  Google Scholar 

  • Williams R, McEldowney A (1990) A guide to the fish otoliths from waters off the Australian Antarctic Territory, Heard and Macquarie Islands. Aust Natl Antarct Res Exped Res Notes No 75:1–173

    Google Scholar 

  • Zimmermann C (1997) On the demersal fish fauna of the Lazarev Sea (Antarctica): composition and community structure. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge, pp 26–32

    Google Scholar 

Download references

Acknowledgements

We thank Romain Causse (Muséum national d’Histoire naturelle, Paris) for his efforts in providing the loan of specimens from the Indian Ocean sector and Michael J. Lannoo (Indiana University School of Medicine–Terre Haute) for perfusing brains of specimens of Trematomus during NBP cruise 97-9. We are also grateful to Taeko Miyazaki (Mie University, Japan) for assisting in our interpretation of retinal histology, to Danette Pratt for her illustrations in Figs. 9 and 11, and to Emilio Riginella who collected and provided samples for otolith shape analyses. Reviewers Michael Matschiner, John C. Montgomery and Sara Ferrando provided valuable comments on the manuscript. This work was supported by US NSF ANT 94-16870 and ANT 04-36190 to JTE, and by the Italian National Antarctic Research Program (PNRA), Project 2013/C1.07 to MLM.

Author information

Authors and Affiliations

Authors

Contributions

JTE conceived the project. JTE and MLM designed research. JTE and MLM conducted field and lab work. JTE and MLM analyzed data, wrote the manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to Joseph T. Eastman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

The authors have followed all applicable national and institutional guidelines for the collection, care, and ethical use of research organisms and material in the conduct of the research, specifically those of the their respective institutional animal care and use committees.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 10881 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eastman, J.T., La Mesa, M. Neuromorphological disparity in deep-living sister species of the Antarctic fish genus Trematomus. Polar Biol 44, 315–334 (2021). https://doi.org/10.1007/s00300-020-02794-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-020-02794-0

Keywords

Navigation