Skip to main content

Advertisement

Log in

Mitochondrial genome diversity and population mitogenomics of polar cod (Boreogadus saida) and Arctic dwelling gadoids

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

High-latitude fish typically exhibit a narrow thermal tolerance window, which may pose challenges when coping with temperatures that shift outside of a species’ range of tolerance. Due to its role in aerobic metabolism and energy balance, the mitochondrial genome is likely critical for the acclimation and adaptation to differing temperature regimes in marine ectotherms. As oceans continue to warm, there is growing need to understand the ability of organisms to respond to changing environmental conditions given evidence that some species, in particular cold-water species, may already be experiencing difficulties. To assess how Arctic gadids in Alaska have responded to differential thermal preferences in the past and how regions are interconnected, we sequenced complete mitochondrial genomes for four Arctic gadids to determine the distribution of mitochondrial diversity and population-level structure as well as to detect signatures of selection acting on the mitochondrial genome. We found little population-level structure within all four species with the clear exception of Gulf of Alaska saffron cod (Eleginus gracilis). Northern localities exhibited higher levels of genetic diversity and primarily northern lineages were observed within polar cod (Boreogadus saida) and saffron cod, likely reflecting asymmetrical dispersal and potentially admixture of distinct lineages via ocean currents. The main evolutionary force shaping the evolution of the mitogenome appears to be purifying selection, but we also identified potential positive selection of candidate amino acid replacements primarily in complex I (ND genes) in polar cod. The high levels of mitochondrial diversity observed in our study and large population size may provide this species with the ability to respond evolutionarily (i.e. long-term) to a changing environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anmarkrud JA, Lifjeld JT (2016) Complete mitochondrial genomes of eleven extinct or possibly extinct bird species. Mol Ecol Resour 17:334–341

    Article  PubMed  CAS  Google Scholar 

  • Atchley WR, Zhao J, Fernandes AD, Drüke T (2005) Solving the protein sequence metric problem. PNAS 102:6395–6400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballard JWO, Melvin RG (2010) Linking the mitochondrial genotype to the organismal phenotype. Mol Ecol 19:1523–1539

    Article  CAS  PubMed  Google Scholar 

  • Barton N (2010) Understanding adaptation in large populations. PLoS Genet 6:e1000987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bouchard C, Mollard S, Suzuki K, Robert D, Fortier L (2016) Contrasting the early life histories of sympatric Arctic gadids Boreogadus saida and Arctogadus glacialis in the Canadian Beaufort Sea. Polar Biol 39:1005–1022

    Article  Google Scholar 

  • Bradstreet MSW, Finley KJ, Sekarak AD, Griffiths WB, Evans CR, MF Fabjan, HE Stallard (1986) Aspects of the biology of Arctic cod (Boreogadus saida) and its importance in Arctic marine food chains. Can Tech Rep Fish Aqaut Sci No. 1491

  • Breines R, Ursvik A, Nymark M, Johansen SD, Coucheron DH (2008) Complete mitochondrial genome sequences of the Arctic Ocean codfishes Arctogadus glacialis and Boreogadus saida reveal oriL and tRNA gene duplications. Polar Biol 31:1245–1252

    Article  Google Scholar 

  • Bryant D, Moulton V (2002) NeighborNet: An agglomerative method for the construction of planar phylogenetic networks. In: Guigo R, Guseld D (eds) Algorithms in bioinformatics, WABI 2002. LNCS, Cham, pp 375–391

    Google Scholar 

  • Burrows MT, Schoeman DS, Buckley LB, Moore P, Poloczanska ES, Brander KM, Brown C, Bruno JF, Duarte CM, Halpem BS, Holding J, Kappel CV, Kiessling W, O’Conner MI, Pandolfi JM, Parmesan C, Schwing FB, Sydeman WJ, Richardson AJ (2011) The pace of shifting climate in marine and terrestrial ecosystems. Science 334:652–655

    Article  CAS  PubMed  Google Scholar 

  • Burton RS, Pereira RJ, Barreto FS (2013) Cytonuclear genomic interactions and hybrid breakdown. Annu Rev Ecol Evol Syst 44:281–302

    Article  Google Scholar 

  • Carr SM, Marshall HD (2008) Phylogeographic analysis of complete mtDNA genomes from walleye pollock (Gadus chalcogrammus Pallas, 1811) shows an ancient origin of genetic biodiversity. Mitochondrial DNA 19:490–496

    CAS  PubMed  Google Scholar 

  • Chevreux B, Wetter T, Suhai S (1999) Genome sequence assembly using trace signals and additional sequence information. Comput Sci Biol 99:45–56

    Google Scholar 

  • Ciannelli L, Bailey KM (2005) Landscape dynamics and resulting species interactions: the cod-capelin system in southeastern Bering Sea. Mar Ecol Progr Ser 291:227–236

    Article  Google Scholar 

  • Cobb D, Fast H, Papst MH, Rosenberg D, Rutherford R, Sareault JE (2008) Beaufort Sea large ocean management area: ecosystem overview and assessment report. Can Tech Rep Fish Aquat Sci 2780

  • Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35:L01703

    Article  Google Scholar 

  • Conant GC, Wagner GP, Stadler PF (2007) Modeling amino acid substitution patterns in orthologous and paralogous genes. Mol Phylogenet Evol 42:298–307

    Article  CAS  PubMed  Google Scholar 

  • Consuegra S, John E, Verspoor G, de Leaniz C (2015) Patterns of natural selection acting on the mitochondrial genome of a locally adapted fish. Genet Sel Evol 47:58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crawford RE, Jorgenson JK (1996) Quantitative studies of Arctic cod (Boreogadus saida) schools: important energy stores in Arctic food web. Arctic 49:181–193

    Article  Google Scholar 

  • Dasher DH, Lomax T, Jewett SC (2012) Alaska Monitoring and Assessment Program 2006 and 2007 Aleutian Islands Coastal Survey Statistical Summary. Alaska Department of Environmental Conservation, Division of Water, Water Quality Standards, Assessment and Restoration, Fairbanks, AK, DEC AKMAP Aleutian2006/2007

  • Delport W, Poon AF, Frost SD, Kosakovsky Pond SL (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26:2455–2457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Robertis A, Taylor K, Wilson CD, Farley EV (2017) Abundance and distribution of Arctic cod (Boreogadus saida) and other pelagic fishes over the U.S. continental shelf of the northern Bering and Chukchi Seas. Deep-Sea Res II 135:51–65

    Article  Google Scholar 

  • Drost HE, Fisher J, Randall F, Kent D, Carmack EC, Farrell AP (2016a) Upper thermal limits of the hearts of Arctic cod Boreogadus saida: adults compared with larvae. J Fish Biol 88:718–726

    Article  CAS  PubMed  Google Scholar 

  • Drost HE, Lo M, Carmack EC, Farrell AP (2016b) Acclimation potential of Arctic cod (Boreogadus saida Lepechin) from the rapidly warming Arctic Ocean. J Exp Biol 219:3114–3125

    CAS  PubMed  Google Scholar 

  • Du Z, Hasegawa H, Cooley JR, Simon C, Yoshimura J, Cai W, Sota T, Li H (2019) Mitochondrial genomics reveals shared phylogeographic patterns and demographic history among three periodical cicada species groups. Mol Biol Evol 36:1187–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffy-Anderson JT, Stabeno PJ, Sidden EC, Andrews AG, Cooper DW, Eisner LB, Farley EV, Harpold CE, Heintz RA, Kimmel DG, Sewall FF, Spear AH, Yasumishii EC (2017) Return of warm conditions in the southeastern Bering Sea: Phytoplankton – Fish. PLoS ONE 12:e0178955

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 19:1792–1797

    Article  CAS  Google Scholar 

  • Efremov RG, Baradaran R, Sazanov LA (2010) The architecture of respiratory complex I. Nature 465:441–445

    Article  CAS  PubMed  Google Scholar 

  • Enzor LA, Zippay ML, Place SP (2013) High latitude fish in a high CO2 world: Synergistic effects of elevated temperature and carbon dioxide on the metabolic rates of Antarctic notothenioids. Comp Biochem Physiol A 164:154–161

    Article  CAS  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Fortier L, Gilbert M, Ponton D, Ingram RG, Robineau B, Legendre L (1996) Impact of freshwater on a subarctic coastal ecosystem under seasonal sea ice (southeastern Hudson Bay, Canada). III. Feeding success of marine fish larvae. J Mar Syst 7:251–265

    Article  Google Scholar 

  • Fossheim M, Primicerio R, Johannesen E, Ingvaldsen RB, Aschan MM, Dolgov AV (2015) Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat Clim Change 5:673–677

    Article  Google Scholar 

  • Frainer A, Primicerio R, Kortsch S, Aune M, Dolgov AV, Fossheim M, Aschan MM (2017) Climate-driven changes in functional biogeography of Arctic marine fish communities. PNAS 114:12202–12207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin CE, Farrell AP, Altimiras J, Axelsson M (2013) Thermal dependence of cardiac function in Arctic fishes: Implications of a warming world. J Exp Biol 216:4251–4255

    PubMed  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selections. Genetics 147:915–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallaway BJ, Konkel WJ, Norcross BL (2017) Some thoughts on estimating change in Arctic cod populations from hypothetical oil spills in the eastern Beaufort Sea. Arctic Sci 3:716–729

    Google Scholar 

  • Garvin MR, Bielwaski JP, Gharrett AJ (2011) Positive Darwinian selection in the piston that powers proton pumps in Complex I of the mitochondria of Pacific Salmon. PLoS ONE 6:e24127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garvin MR, Bielawski JP, Sazanov LA, Gharett AJ (2014) Review and meta-analysis of natural selection in mitochondrial complex I in metazoans. J Zool Syst Evol Res 53:1–17

    Article  Google Scholar 

  • Gershoni M, Templeton AR, Mishmar D (2009) Mitochondrial bioenergetics as a major motive force of speciation. BioEssays 31:642–650

    Article  CAS  PubMed  Google Scholar 

  • Ghiselli F, Milani L (2019) Linking the mitochondrial genotype to phenotype: a complex endeavor. Proc Trans R Soc Lond B 375:20190169

    Article  CAS  Google Scholar 

  • Gradinger RR, Bluhm BA (2004) In-situ observations on the distribution and behavior of amphipods and Arctic cod (Boreogadus saida) under the sea ice of the High Arctic Canada Basin. Polar Biol 27:595–603

    Article  Google Scholar 

  • Grant WS, Spies IB, Canino MF (2006) Biogeographic evidence for selection of mitochondrial DNA in North Pacific walleye pollock Theraga chalcogramma. J Hered 97:571–580

    Article  CAS  PubMed  Google Scholar 

  • Hahn C, Bachmann L, Chevreux B (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads – a baiting and iterative approach. Nucleic Acids Res 41:e129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison K, Pavlova A, Gan HM, Lee YP, Austin CM, Sunnucks P (2016) Pleistocene divergence across a mountain range and the influence of selection on mitogenome evolution in threatened Australian freshwater cod species. Heredity 116:506–515

    Article  Google Scholar 

  • Harwood LA, Smith TG, George JC, Sandstrom SJ, Walkusz W, Divoky GJ (2015) Change in the Beaufort Sea ecosystem: Diverging trends in body condition and/or production in five marine vertebrate species. Prog Oceanogr 136:263–273

    Article  Google Scholar 

  • Hill GE (2015) Mitonuclear ecology. Mol Biol Evol 32:1917–1927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hollowed AB, Barbeaux SJ, Cokelet ED, Kotwicki S, Ressler PH, Spital C, Wilson CD (2012) Effects of climate variations on pelagic ocean habitats and their role in structuring forage fish distributions in the Bering Sea. Deep Sea Res II 65–70:230–250

    Article  Google Scholar 

  • Hollowed AB, Planque B, Loeng H (2013) Potential movement of fish and shellfish stocks from the sub-Arctic to the Arctic Ocean. Fish Oceanogr 22:355–370

    Article  Google Scholar 

  • Howell SEL, Brady M, Derksen C, Kelly RE (2016) Recent changes in sea ice area flux through the Beaufort Sea during the summer. J Geophys Res 121:2659–2672

    Article  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki W, Fukunaga T, Isagozawa R, Yamada K, Maeda Y, Satoh TP, Sado T, Mabuchi K, Takeshima H, Miya M, Nishida M (2013) MitoFish and MitoAnnotator: a mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Mol Biol Evol 30:2531–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston I, Calvo J, Guderley H, Fernandez D, Palmer L (1998) Latitudinal variation in the abundance and oxidative capacities of muscle mitochondria in perciform fishes. J Exp Biol 201:1–12

    Article  CAS  PubMed  Google Scholar 

  • Koenker BL, Copeman LA, Laurel BJ (2018a) Impacts of temperature and food availability on the condition of larval Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogrammus). ICES J Mar Sci 75:2370–2385

    Article  Google Scholar 

  • Koenker BL, Laurel BJ, Copeman LA, Ciannelli L (2018b) Effects of temperature and food availability on the survival and growth of larval Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogrammus). ICES J Mar Sci 75:2386–2402

    Article  Google Scholar 

  • Kosakovsky Pond SL, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679

    Article  CAS  Google Scholar 

  • Lajbner Z, Pnini R, Camus MF, Miller J, Dowling DK (2018) Experimental evidence that thermal selection shapes mitochondrial genome evolution. Sci Rep 8:9500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lamb AM, Gan HM, Greening C, Joseph L, Lee YP, Morán-Ordóñez A, Sunnucks P, Pavlova A (2018) Climate-driven mitochondrial selection: a test in Australian songbirds. Mol Ecol 27:898–918

    Article  CAS  PubMed  Google Scholar 

  • Lanfear R, Calcott B, Ho SYW, Guindon S, (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29:1695–1701

    Article  CAS  PubMed  Google Scholar 

  • Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2016) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol 34:772–773

    Google Scholar 

  • Laurel BJ, Spencer M, Iseri P, Copeman LA (2016) Temperature-dependent growth and behavior of juvenile Arctic cod (Boreogadus saida) and co-occurring North Pacific gadids. Polar Biol 39:1127–1135

    Article  Google Scholar 

  • Leo E, Kunz KL, Schmidt M, Storch D, Pörtner MFC (2017) Mitochondrial acclimation potential to ocean acidification and warming of polar cod (Boreogadus saida) and Atlantic cod (Gadus morhua). Front Zool 14:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Logerwell E, Busby M, Carothers C, Cotton S, Duffy-Anderson J, Farley E, Goddard P, Heintz R, Holladay B, Horne J, Johnson S, Lauth B, Moulton L, Neff D, Norcross B, Parker-Stetter S, Seigle J, Sformo T (2015) Fish communities across a spectrum of habitats in the western Beaufort Sea and Chukchi Sea. Prog Oceanogr 136:115–132

    Article  Google Scholar 

  • Lucassen M, Koschnick N, Eckerle LG, Pörtner H-O (2006) Mitochondrial mechanisms of cold adaptation in cod (Gadus morhua L.) populations form different climatic zones. J Exp Biol 209:2462–2471

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Yang F, Jiang F, Chapuis MP, Shali Y, Sword GA, Kang L (2012) Mitochondrial genomes reveal global phylogeography and dispersal routes of the migratory locust. Mol Ecol 21:4344–4358

    Article  PubMed  Google Scholar 

  • Machado DJ, Lyra ML, Grant T (2016) Mitogenome assembly from genomic multiplex libraries: Comparison of strategies and novel mitogenomes for five species of frogs. Mol Ecol Resour 16:686–693

    Article  CAS  PubMed  Google Scholar 

  • Marshall HD, Coulson MW, Carr SM (2009) Near neutrality, rate heterogeneity, and linkage govern mitochondrial genome evolution in Atlantic Cod (Gadus morhua) and other gadine fish. Mol Biol Evol 26:579–589

    Article  CAS  PubMed  Google Scholar 

  • Marshall DJ, Monro K, Bode M, Keough MJ (2010) Phenotype-environment mismatches reduce connectivity in the sea. Ecol Lett 13:128–140

    Article  CAS  PubMed  Google Scholar 

  • McClellan DA, Palfreyman EJ, Smith MJ, Moss JL, Christensen RG, Sailsbery JK (2005) Physicochemical evolution and molecular adaptation of the cetacean and artiodactyl cytochrome b proteins. Mol Biol Evol 22:437–455

    Article  CAS  PubMed  Google Scholar 

  • Medrano JF, Aasen E, Sharrow J (1990) DNA extraction from nucleated red blood cells. Biotechniques 8:43

    CAS  PubMed  Google Scholar 

  • Michel C, Bluhm B, Gallucci V, Gaston AJ, Gordillo FJL, Gradinger R, Hopcroft R, Jensen N, Mustonen T, Niemi A, Nielson TG (2012) Biodiversity of Arctic marine ecosystems and responses to climate change. Biodiversity 13:210–214

    Article  Google Scholar 

  • Michaud J, Fortier L, Rowe P, Ramseier R (1996) Feeding success and survivorship of Arctic cod larvae, Boreogadus saida, in the Northeast water polynya (Greenland Sea). Fish Oceanogr 5:120–135

    Article  Google Scholar 

  • Mjelle KA, Karlsen BO, Jørgensen TE, Moum T, Johansen SD (2008) Halibut mitochondrial genomes contain extensive heteroplasmic tandem repeat arrays involved in DNA recombination. BMC Genomics 9:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morales HE, Pavlova A, Amos N, Major R, Killian A, Greening C, Sunnucks P (2018) Concordant divergence of mitogenomes and a mitonuclear gene cluster in bird lineages inhabiting different climates. Nat Ecol Evol 2:1258–1267

    Article  PubMed  Google Scholar 

  • Morgan-Richards M, Bulgarella M, Sivyer L, Dowle EJ, Hale M, McKean NE, Trewick SA (2017) Explaining large mitochondrial sequence differences within a population sample. R Soc Open Sci 4:170730

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mueter FJ, Litzow MA (2008) Sea ice retreat alters the biogeography of the Bering Sea continental shelf. Ecol Appl 18:309–320

    Article  PubMed  Google Scholar 

  • Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Kosakovsky Pond SL (2012) Detecting individual sites subject to episodic diversifying selection. PLoS Genet 8:e1002764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, Scheffler K (2013) FUBAR: a fast, unconstrained Bayesian AppRoximation for inferring selection. Mol Biol Evol 30:1196–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nabholz B, Ellegren H, Wolf JB (2013) High levels of gene expression explain the strong evolutionary constraint of mitochondrial protein-coding genes. Mol Biol Evol 30:272–284

    Article  CAS  PubMed  Google Scholar 

  • Overland JE, Stabeno PJ (2004) Is the climate of the Bering Sea warming and affecting the ecosystem? EOS 85:309–316

    Article  Google Scholar 

  • Pálsson S, Källman T, Paulsen J, Árnason E (2009) An assessment of mtDNA variation in Arctic gadoids. Polar Biol 32:471–479

    Article  Google Scholar 

  • Pavlova A, Gan HM, Lee YP, Austin CM, Gilligan DM, Lintermans M, Sunnucks P (2017) Purifying selection and genetic drift shaped Pleistocene evolution of the mitochondrial genome in an endangered Australian freshwater fish. Heredity 118:466–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne MC, Reusser DA, Lee II H (2012) Moderate-resolution sea surface temperature data and seasonal pattern analysis for the Arctic Ocean ecoregions: U.S. Geological Survey Open-File Report 2011–1246, 20 p. https://pubs.usgs.gov/of/2011/1246/

  • Pilgrim BL, Perry RC, Barron JL, Marshall HD (2012) Nucleotide variation in the mitochondrial genome provides evidence for dual routes of postglacial recolonization and genetic recombination in the northeastern brook trout (Salvelinus fontinalis). Genet Mol Res 11:3466–3481

    Article  CAS  PubMed  Google Scholar 

  • Pörtner H-O (2002) Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp Biochem Physiol A 132:739–761

    Article  Google Scholar 

  • Roa-Varón A, Ortí G (2009) Phylogenetic relationships among families of Gadiformes (Teleostei, Paracanthopterygii) based on nuclear and mitochondrial data. Mol Phylogenet Evol 52:688–704

    Article  PubMed  CAS  Google Scholar 

  • Ralph P, Coop G (2010) Parallel adaptation: one or many waves of advance of an advantageous allele? Genetics 186:647–668

    Article  PubMed  PubMed Central  Google Scholar 

  • Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6 [computer program]. https://tree.bio.ed.ac.uk/software/tracer

  • Rambaut A (2009) FigTree version 1.3.1 [computer program]. https://tree.bio.ed.ac.uk

  • Ramos B, González-Acuña D, Loyola DE, Johnson WE, Parker PG, Massaro M, Dantas GPM, Mirando MD, Vianna JA (2018) Landscape genomics: natural selection drives the evolution of mitogenome in penguins. BMC Genomics 19:53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rand DM, Haney RA, Fry AJ (2004) Cytonuclear coevolution: the genomics of cooperation. Trends Ecol Evol 19:646–653

    Article  Google Scholar 

  • Rand KM, Logerwell EA (1970s) The first demersal trawl survey of benthic fish and invertebrates in the Beaufort Sea since the late 1970s. Polar Biol 34:475–488

    Article  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MRBAYES 3.2: efficient bayesian phylogenetic inference and model selection across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Pesini E, Mishmar D, Brandon M, Procaccio VV, Wallace DC (2004) Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303:223–226

    Article  CAS  PubMed  Google Scholar 

  • Sandersfeld T, Mark FC, Knust R (2017) Temperature-dependent metabolism in Antarctic fish: do habitat temperature conditions affect thermal tolerance ranges? Polar Biol 40:141–149

    Article  Google Scholar 

  • Silva G, Lima FP, Martel P, Castilho R (2014) Thermal adaptation and clinal mitochondrial DNA variation of European anchovy. Proc Biol Sci 281:20141093

    PubMed  PubMed Central  Google Scholar 

  • Smart TI, Duffy-Anderson JT, Horne JK, Farley EV, Wilson CD, Napp JM (2012) Influence of environment on walleye pollock eggs, larvae, and juveniles in the southeastern Bering Sea. Deep-Sea Res II 65–70:196–207

    Article  Google Scholar 

  • Sme N, Lyon S, Canino M, Chernova N, O’Bryhim J, Lance S, Jones K, Mueter F, Gharrett A (2017) Distinction of saffron cod (Eleginus gracilis) from several other gadid species by using microsatellite markers. Fish Bull 116:60–68

    Article  Google Scholar 

  • Sme NA, Lyon S, Mueter F, Brykov V, Sakurai Y, Gharrett AJ (2019) Examination of saffron cod Eleginus gracilis (Tilesius 1810) population genetic structure. Polar Biol. https://doi.org/10.1007/s00300-019-02601-5

    Article  Google Scholar 

  • Sonsthagen SA, Talbot SL, White CM (2004) Gene flow and genetic characterization of northern goshawks breeding in Utah. Condor 106:826–836

    Article  Google Scholar 

  • Spalding MD, Fox HE, Allen GR, Davidson N, Ferdana ZA, Finlayson M, Halpern BS, Jorge MA, Lombana A, Lourie SA, Martin KD, McManus E, Molnar J, Recchia CA, Robertson J (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57:573–583

    Article  Google Scholar 

  • Stabeno PJ, Kachel NB, Moore SE, Napp JM, Sigler M, Yamaguchi A, Zerbini AN (2012) Comparison of warm and cold years on the southern Bering Sea shelf and some implications for the ecosystem. Deep Sea Res Part II 65–70:31–45

    Article  Google Scholar 

  • Strobel A, Graeve M, Poertner HO, Mark FC (2013) Mitochondrial acclimation capacities to ocean warming and acidification are limited in the Antarctic nototheniid fish, Notothenia rossii and Lepidontothen squamifrons. PLoS ONE 8:e688665

    Google Scholar 

  • Sokolova I (2018) Mitochondrial adaptations to variable environments and their role in animals’ stress tolerance. Integr Comp Biol 58:519–531

    Article  CAS  PubMed  Google Scholar 

  • Sundby S, Nakken O (2008) Spatial shifts in spawning habitats of Arcto-Norwegian cod related to multidecadal climate oscillations and climate change. ICES J Mar Sci 65:953–962

    Article  Google Scholar 

  • Sunnucks P, Morales HE, Lamb AM, Pavlova A, Greening C (2017) Integrative approaches for studying mitochondrial and nuclear genome co-evolution in oxidative phosphorylation. Front Genet 8:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tajima F (1989) The effect of change in population size on DNA polymorphism. Genetics 123:597–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teletchea F, Laudet V, Hänni C (2006) Phylogeny of the Gadidae (sensu Svetovidov, 1948) based on their morphology and two mitochondrial genes. Mol Phylogenet Evol 38:189–199

    Article  CAS  PubMed  Google Scholar 

  • Thorsteinson LK, Love MS, eds (2016) Alaska Arctic marine fish ecology catalog: U.S. Geological Survey Scientific Investigations Report 2016–5038 (OCS Study, BOEM 2016-048), 768 p

  • Wang M, Overland JE, Stabeno P (2012) Future climate of the Bering and Chukchi Seas projected by global climate models. Deep Sea Res Part II 65–70:46–57

    Article  Google Scholar 

  • Welch HE, Bergmann MA, Siferd TD, Martin KA, Curtis MF, Crawford RE, Conover RJ, Hop H (1992) Energy flow through the marine ecosystem of the Lancaster Sound region, Arctic Canada. Arctic 45:343–357

    Article  Google Scholar 

  • West AP, Shadel GS, Ghosh S (2011) Mitochondria in innate immune responses. Nat Rev Immunol 11:389–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White DJ, Wolff JN, Pierson M, Gemmell NJ (2008) Revealing the hidden complexities of mtDNA inheritance. Mol Ecol 17:4925–4942

    Article  CAS  PubMed  Google Scholar 

  • Wildes SL, Whittle J, Nguyen H, and Guyon J (2016) Boreogadus saida genetics in the Alaskan Arctic. US Dept. of the Interior, Bureau of Ocean Energy Management, Alaska OCS Region. OCS Study BOEM 2011-AK-11-08 a/b. 67 pp. – DRAFT REPORT

  • Wilson RE, Sage GK, Sonsthagen SA, Gravley MC, Menning DM, Talbot SL (2017) Genomics of Arctic Cod. Anchorage (AK): US Dept. of the Interior, Bureau of Ocean Energy Management, Alaska OCS Region. OCS Study BOEM 2017-066. 92pp

  • Wilson RE, Pierson BJ, Sage GK, Gravley MC, Menning DM, Sonsthagen SA, Nelson J, Talbot SL (2018) Genetic and genomic data on Arctic cod (Boreogadus saida) and other gadids, Beaufort Sea, Alaska, 2011–2014. U.S. Geological Survey Data Release, Reston

    Google Scholar 

  • Wilson RE, Sage GK, Wedemeyer K, Sonsthagen SA, Menning DM, Gravley MC, Sexson MG, Nelson RJ, Talbot SL (2019) Micro-geographic population genetic structure within Arctic cod (Boreogadus saida) in Beaufort Sea of Alaska. ICES J Mar Sci 76:1713–1721

    Article  Google Scholar 

  • Wood WR, Austad SN, Bize P, Jimenez AG, Montooth KL, Schulte PM, Scott GR, Sokolova I, Treberg JR, Salin K (2018) The mitochondrial contribution to animal performance, adaptation, and life-history variation. Integr Comp Biol 58:480–485

    Article  CAS  Google Scholar 

  • Woolley S, Johnson J, Smith MJ, Crandall KA, McClellan DA (2003) TreeSAAP: selection on amino acid properties using phylogenetic trees. Bioinformatics 19:671–672

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Bioinformatics 13:555–556

    Article  CAS  Google Scholar 

  • Zhang J, Broughton RE (2013) Mitochondrial-nuclear interactions: compensatory evolution or variable functional constraints among vertebrate oxidative phosphorylation genes? Genome Biol Evol 5:1781–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Bureau of Ocean Energy and Management (BOEM) Environmental Studies Program, Alaska OCS Region, Anchorage, AK under Agreement Number M14PG0008. The methods and results follow those outlined in a prepublication report of Wilson et al. (2017) and were further augmented and interpreted in this manuscript. This research used resources of the Core Science Analytics and Synthesis Advanced Research Computing program at the U.S. Geological Survey. We thank Brenda Norcross (University of Alaska Fairbanks), Vanessa von Biela (U.S. Geological Survey), Lorena Edenfield (University of Alaska Fairbanks), Fisheries and Oceans Canada, and the University of Washington Burke Museum Fish Collection for providing samples for this study, Gabriel DeGange and George K. Sage for laboratory support, Alexandra Pavlova for advice on analysis, and Han Ming Gan (Deakin University) for saffron cod mitogenome assembly support. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Contributions

REW, SAS, KW, and SLT contributed to the study conception and design; NS, AJG, ARM, KW, RJN collected/obtained cod specimens, REW and SAS collected sequence data, REW analyzed the data and lead writing, and all authors contributed to writing the paper and approve this version.

Corresponding author

Correspondence to Robert E. Wilson.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the special issue on the “Arctic Gadids in a Changing Climate”, coordinated by Franz Mueter, Haakon Hop, Benjamin Laurel, Caroline Bouchard, and Brenda Norcross.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, R.E., Sonsthagen, S.A., Smé, N. et al. Mitochondrial genome diversity and population mitogenomics of polar cod (Boreogadus saida) and Arctic dwelling gadoids. Polar Biol 43, 979–994 (2020). https://doi.org/10.1007/s00300-020-02703-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-020-02703-5

Keywords

Navigation