Skip to main content
Log in

Non-breeding areas of three sympatric auk species breeding in three Icelandic colonies

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Like many seabirds, auks spend most of the year in offshore areas. Information on which oceanic areas they rely on throughout the winter is therefore important in understanding their population dynamics and establishing appropriate conservation measures. The breeding populations of Thick-billed Murres (Uria lomvia), Common Murres (Uria aalge) and Razorbills (Alca torda) in Iceland have been reported declining for the last 30 years. Thick-billed Murres have shown the most alarming rate of decrease, while Razorbills have declined the least. To help understand these changes, we collected information about the non-breeding distribution of these three species by using light-based geolocation. Geolocators were deployed on breeding adults in three different colonies in Iceland in 2013 and 2014. Data showed that the three species’ wintering areas differed substantially. Thick-billed Murres wintered off the west coast of Greenland and East Greenland/Northern Iceland, Common Murres favoured areas around Iceland/East Greenland and to the southwest along the Mid-Atlantic Ridge, and Razorbills were mostly distributed around Iceland. Although some intraspecific variation was evident, we conclude that the population development of Thick-billed Murres in Iceland is likely to be largely influenced by environmental conditions in west Greenland, while Common Murres and Razorbills are more dependent on the oceanic area around Iceland. The results may therefore prove to be an important platform for understanding the population dynamics of these three species in Iceland and informing conservation actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bakken V, Runde O, Tjørve E (2003) Norwegian bird ringing atlas (volume 1 divers-Auks). Stavanger, Stavanger Museum

    Google Scholar 

  • Barbaro A, Einarsson B, Birnir B, Sigurdsson S, Valdimarsson H, Pálsson ÓK, Sveinbjörnsson S, Sigurdsson T (2009) Modelling and simulations of the migration of pelagic fish. ICES J Mar Sci 66:826–838

    Article  Google Scholar 

  • Beaugrand G, Reid PC, Ibanez F, Lindley JA, Edwards M (2002) Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296:1692–1694

    Article  CAS  Google Scholar 

  • Birkhead TR (1977) Adaptive significance of the nestling period of Guillemots Uria aalge. Ibis 119:544–549

    Article  Google Scholar 

  • Bivand R, Lewin-Koh N (2017). Maptools: Tools for reading and handling spatial objects. R package version 0.9-2. https://CRAN.R-project.org/package=maptools

  • Brown RGB (1985) The Atlantic Alcidae at sea. In: Nettleship DN, Birkhead TR (eds) The Atlantic Alcidae. Academic Press, London, pp 383–426

    Google Scholar 

  • Burke CM, Montevecchi WA, Regular PM (2015) Seasonal variation in parental care drives sex-specific foraging by a monomorphic seabird. PLoS ONE 10:e0141190

    Article  Google Scholar 

  • Calenge C (2006) The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecol Modell 197:516–519

    Article  Google Scholar 

  • Carscadden JE, Gjøsæter H, Vilhjálmsson H (2013) A comparison of recent changes in distribution of capelin (Mallotus villosus) in the Barents Sea, around Iceland and in the Northwest Atlantic. Prog Oceanogr 114:64–83. https://doi.org/10.1016/j.pocean.2013.05.005

    Article  Google Scholar 

  • Croxall JP, Butchart SHM, Lascelles B, Stattersfield AJ, Sullivan B, Symes A, Taylor P (2012) Seabird conservation status, threats and priority actions: a global assessment. Bird Conserv Int 22:1–34. https://doi.org/10.1017/s0959270912000020

    Article  Google Scholar 

  • Daunt F, Afanasyev V, Silk JRD, Wanless S (2006) Extrinsic and intrinsic determinants of winter foraging and breeding phenology in a temperate seabird. Behav Ecol Sociobiol 59:381. https://doi.org/10.1007/s00265-005-0061-4

    Article  Google Scholar 

  • Descamps S, Strøm H, Steen H (2013) Decline of an arctic top predator: synchrony in colony size fluctuations, risk of extinction and the subpolar gyre. Oecologia 173:1271–1282. https://doi.org/10.1007/s00442-013-2701-0

    Article  PubMed  Google Scholar 

  • Descamps S, Aars J, Fuglei E, Kovacs KM, Lydersen C, Pavlova O, Pedersen ÅØ, Ravolainen V, Strøm H (2017) Climate change impacts on wildlife in a High Arctic archipelago—Svalbard Norway. Glob Chang Biol 23:490–502

    Article  Google Scholar 

  • Elliot KH, Linnebjerg JF, Burke C, Gaston AJ, Mosbech A, Frederiksen M, Merkel FR (2017) Growth, not mortality, drives parental care strategy in auks. Am Nat 189:526–538

    Article  Google Scholar 

  • Elliott KH, Gaston AJ (2014) Dive behavior and daily energy expenditure in Thick-billed Murres Uria lomvia after leaving the breeding colony. Mar Ornithol 42:183–189

    Google Scholar 

  • Fetterer F, Knowles K, Meier W, Savoie M (2016) Sea ice index, version 2 [G02186]. National Snow and Ice Data Center, Boulder. https://doi.org/10.7265/N5QJ7F7W

    Book  Google Scholar 

  • Fluhr J, Strøm H, Pradel R, Duriez O, Beaugrand G, Descamps S (2017) Weakening of the subpolar gyre as a key driver of North Atlantic seabird demography: a case study with Brünnich’s Guillemots in Svalbard. MEPS 563:1–11

    Article  Google Scholar 

  • Fort J, Porter WP, Grémillet D (2009) Thermodynamic modelling predicts energetic bottleneck for seabirds wintering in the northwest Atlantic. J Exp Biol 212:2483–2490

    Article  Google Scholar 

  • Fort J, Steen H, Strøm H, Tremblay Y, Grønningsæter E, Pettex E, Porter WP, Grémillet D (2013) Energetic consequences of contrasting winter migratory strategies in a sympatric Arctic seabird duet. J Avian Biol 44:255–262

    Article  Google Scholar 

  • Fox JW (2010) Geolocator manual v8 (March 2010). British Antarctic Survey, Cambridge

    Google Scholar 

  • Frederiksen M (2010) Appendix 1: Seabirds in the North East Atlantic: a review of status, trends and anthropogenic impact. TemaNord 587:47–122

    Google Scholar 

  • Frederiksen M, Moe B, Daunt F, Phillips RA, Barrett RT, Bogdanova MI, Boulinier T, Chardine JW, Chastel O, Chivers LS, Christensen-Dalsgaard S, Clément-Chastel C, Colhoun K, Freeman R, Gaston AJ, González-Solís J, Goutte A, Grémillet D, Guilford T, Jensen GH, Krasnov Y, Lorentsen SH, Mallory ML, Newell M, Olsen B, Shaw D, Steen H, Strøm H, Systad GH, Thórarinsson TL, Anker-Nilssen T (2012) Multicolony tracking reveals the winter distribution of a pelagic seabird on an ocean basin scale. Divers Distrib 18:530–542

    Article  Google Scholar 

  • Frederiksen M, Anker-Nilssen T, Beaugrand G, Wanless S (2013) Climate, copepods and seabirds in the boreal Northeast Atlantic—current state and future outlook. Glob Chang Biol 19:364–372

    Article  Google Scholar 

  • Frederiksen M, Descamps S, Erikstad KE, Gaston AJ, Gilchrist HG, Johansen KL, Kolbeinsson Y, Linnebjerg JF, Mallory ML, McFarlane Tranquilla LA, Merkel FR, Montevecchi WA, Mosbech A, Reiertsen TK, Robertson GJ, Steen H, Strøm H, Thórarinsson TL (2016) Migratory connectivity of a declining seabird on an ocean basin scale: conservation implications. Biol Conserv 200:26–35

    Article  Google Scholar 

  • Gardarsson A (2006) Recent changes in numbers of cliff-breeding seabirds in Iceland. Bliki 27:13–22

    Google Scholar 

  • Gardarsson A, Gudmundsson GA, Lilliendahl K (in press) The numbers of large auks on the cliffs of Iceland in 2006–2008. Bliki 33 (In Icelandic with an English summary)

  • Gaston AJ, Nettleship DN (1981) The Thick-billed Murres of Prince Leopold Island. CWS Monograph, Ottawa

    Google Scholar 

  • Gaston AJ, Mallory M, Gilchrist HG (2012) Populations and trends of Canadian Arctic seabirds. Polar Biol 35:1221–1232. https://doi.org/10.1007/s00300-012-1168-5

    Article  Google Scholar 

  • Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, Fujita R, Heinemann D, Lenihan HS, Madin EMP, Perry MT, Selig ER, Spalding M, Steneck R, Watson R (2008) A global map of human impact on marine ecosystems. Science 319:948–952

    Article  CAS  Google Scholar 

  • Hammer S, Madsen JJ, Jensen J-K, Petersen KT, Bloch D, Thorup K (2014) Færøsk Trækfugleatlas—the Faroese bird migration atlas. Faroe University Press, Tórshavn

    Google Scholar 

  • Harris MP, Wanless S (1990) Moult and autumn colony attendance of auks. Brit Birds 83:55–66

    Google Scholar 

  • Harris MP, Wanless S (1996) Differential responses of Guillemot Uria aalge and Shag Phalacrocorax aristotelis to a late winter wreck. Bird Study 43:220–230

    Article  Google Scholar 

  • Harris MP, Webb A, Tasker ML (1991) Growth of young Guillemots Uria aalge after leaving the colony. Seabird 13:40–44

    Google Scholar 

  • Harris MP, Frederiksen M, Wanless S (2007) Within- and between-year variation in the juvenile survival of Common Guillemots Uria aalge. Ibis 149:472–481

    Article  Google Scholar 

  • Hentati-Sundberg J (2011) Arctic seabirds breeding in the African-Eurasian waterbird agreement (AEWA) area. In: CAFF’s circumpolar seabird expert group (CBird), CAFF Assessment Series Report No. 1, March 2011, CAFF International Secretariat, Akureyri. ISBN 978-9935-431-03-5

  • Kampp K, Nettleship DN, Evans PGH (1994) Thick-billed Murres of Greenland: status and prospects. In: Nettleship DN, Burger J, Gochfeld M (eds) Seabirds on islands—threats, case studies and action plans. BirdLife Conservation Series No. 1. BirdLife, Cambridge, pp 133–154

    Google Scholar 

  • Lilliendahl K (2009) Winter diets of auks in Icelandic coastal waters. Mar Biol Res 5:143–154. https://doi.org/10.1080/17451000802279636

    Article  Google Scholar 

  • Lilliendahl K, Solmundsson J (1997) An estimate of summer food consumption of six seabird species in Iceland. ICES J Mar Sci 54:624–630

    Article  Google Scholar 

  • Lilliendahl K, Solmundsson J (1998) The summer diets of six Icelandic seabird species. Bliki 19:1–12 (In Icelandic with an English summary)

    Google Scholar 

  • Linnebjerg JF, Fort J, Guilford T, Reuleaux A, Mosbech A, Frederiksen M (2013) Sympatric breeding auks shift between dietary and spatial resource partitioning across the annual cycle. PLoS ONE 8:e72987

    Article  CAS  Google Scholar 

  • Lyngs P (2003) Migration and wintering ranges of birds in Greenland. An analysis of ringing recoveries. DOFT 97:1–167

    Google Scholar 

  • MacDonald A, Heath MR, Edwards M, Furness RW, Pinnegar JK, Wanless S, Speirs DC, Greenstreet SPR (2015) Climate-driven trophic cascades affecting seabirds around the British Isles. Oceanogr Mar Biol 53:55–80

    Google Scholar 

  • McFarlane Tranquilla L, Montevecchi WA, Hedd A, Regular PM, Robertson GJ, Fifield DA, Devillers R (2015) Ecological segregation among Thick-billed Murres (Uria lomvia) and Common Murres (Uria aalge) in the Northwest Atlantic persists through the nonbreeding season. Can J Zool 93:447–460

    Article  Google Scholar 

  • Merkel F, Labansen AL, Boertmann D, Mosbech A, Egevang C, Falk K, Linnebjerg JF, Frederiksen M, Kampp K (2014) Declining trends in the majority of Greenland’s Thick-billed Murre (Uria lomvia) colonies 1981–2011. Polar Biol 37:1061–1071. https://doi.org/10.1007/s00300-014-1500-3

    Article  Google Scholar 

  • Paleczny M, Hammill E, Karpouzi V, Pauly D (2015) Population trend of the World’s monitored seabirds, 1950–2010. PLoS ONE 10:e0129342. https://doi.org/10.1371/journal.pone.0129342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pálsson ÓK, Gislason A, Gudfinnsson HG, Gunnarsson B, Ólafsdóttir SR, Petursdottir H, Sveinbjörnsson S, Thorisson K, Valdimarsson H (2012) Ecosystem structure in the Iceland Sea and recent changes to the capelin (Mallotus villosus) population. ICES J Mar Sci 69:1242–1254

    Article  Google Scholar 

  • Petersen Æ (1998) Íslenskir fuglar. Vaka-Helgafell, Reykjavík

    Google Scholar 

  • Phillips RA, Silk JRD, Croxall JP, Afanasyev V, Briggs DR (2004) Accuracy of geolocation estimates for flying seabirds. MEPS 266:265–272

    Article  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. In: R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/

  • Tull CE, Germain P, May AW (1972) Mortality of Thick-billed Murres in the West Greenland salmon fishery. Nature 237:42–44

    Article  Google Scholar 

  • Vilhjálmsson H (1994) The Icelandic capelin stock. Rit Fiskideildar 13:1–281

    Google Scholar 

  • Vilhjálmsson H (2002) Capelin (Mallotus villosus) in the Iceland. East Greenland-Jan Mayen ecosystem. ICES J Mar Sci 59:870–883

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Icelandic Game Research Fund. Additional data on Common Murres and Thick-billed Murres from Langanes was collected as part of the Norwegian project SEATRACK and kindly contributed to this study. Jannie Fries Linnebjerg was partly funded by the Carlsberg Foundation and a Linnaeus grant to the Centre for Animal Movement Research (CAnMove) at Lund University from the Swedish Research Council and Lund University. The Icelandic Institute of Natural History provided data on ringing recoveries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jannie Fries Linnebjerg.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linnebjerg, J.F., Frederiksen, M., Kolbeinsson, Y. et al. Non-breeding areas of three sympatric auk species breeding in three Icelandic colonies. Polar Biol 41, 1951–1961 (2018). https://doi.org/10.1007/s00300-018-2334-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-018-2334-1

Keywords

Navigation