Skip to main content

Advertisement

Log in

Using distance sampling and occupancy rate to estimate abundance of breeding pairs of Wilson’s Storm Petrel (Oceanites oceanicus) in Antarctica

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Reliable population estimates are needed for the conservation management of seabird populations. Failing to account for detection probability in surveys often leads to underestimate population size and, if detection probability varies among surveys, to bias the estimated trends. This is particularly relevant for storm petrels, which are widespread small burrow- or cavity-nesting seabirds, which have low detection probabilities on land and at sea and whose population status and trends are the least known among seabirds. Here, we used the distance sampling method to estimate detection probability and breeding population size of the cavity-nesting Wilson’s Storm Petrel (Oceanites oceanicus) in the Pointe Géologie archipelago, East Antarctica. Detection probability was 0.353 ± 0.053 and the average density of active nests was 45.53 ± 15.63 nests/ha. The proportion of nests occupied by breeders was estimated using an endoscope on a sample of nests and was 0.455 ± 0.053. The breeding population was estimated to be 793 (95% CI 344–1359) breeding pairs in January 2016. We advocate the distance sampling method as a robust approach to estimate abundance of breeding Wilson’s Storm Petrels in Antarctica. Comparison with an earlier survey suggests that the population has decreased over the past 30 years, possibly partly due to a reduction in nesting habitat following the extension of the surface area occupied by penguin colonies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ainley DG (2002) The Adélie Penguin: bellwether of climate change. Columbia University Press, New York

    Book  Google Scholar 

  • Anderson DR (2003) Response to Engeman: index values rarely constitute reliable information. Wildl Soc B 31:288–291

    Google Scholar 

  • Barbraud C, Delord K, Marteau C, Weimerskirch H (2009) Estimates of population size of White-chinned Petrels and Grey Petrels at Kerguelen Islands and sensitivity to fisheries. Anim Conserv 12:258–265

    Article  Google Scholar 

  • Bart J, Fligner MA, Notz WI (1998) Sampling and statistical methods for behavioural ecologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Beck JR, Brown DW (1972) The biology of Wilson’s storm petrels Oceanites oceanicus (Kuhl) at Signy Island, South Orkney Islands. Br Antarct Surv Sci Rep 69:1–54

    Google Scholar 

  • Bolton M, Brown JG, Moncrieff H, Ratcliffe N, Okill JD (2010) Playback re-survey and demographic modelling indicate a substantial increase in breeding European Storm-petrels Hydrobates pelagicus at the largest UK colony, Mousa, Shetland. Seabird 23:14–24

    Google Scholar 

  • Brooke M (2004) Albatrosses and petrels across the world. Oxford University Press, Oxford

    Google Scholar 

  • Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2001) Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, Oxford

    Google Scholar 

  • Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2004) Advanced distance sampling: estimating abundance of biological populations. Oxford University Press, Oxford

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multinomial inference. Springer, New York

    Google Scholar 

  • Chapman DG (1951) Some properties of the hypergeometric distribution with applications to zoological sample censuses. Univ Calif Publ Stat 1:131–159

    Google Scholar 

  • Chastel O, Weimerskirch H, Jouventin P (1993) High annual variability in reproductive success and survival of an Antarctic seabird, the snow petrel Pagodroma nivea: a 27-year study. Oecologia 94:278–285

    Article  CAS  PubMed  Google Scholar 

  • Copestake PG, Croxall JP, Prince PA (1988) Use of cloacal sexing techniques in mark-recapture estimates of breeding population size in Wilson’s stormpetrel Oceanites oceanicus. Polar Biol 8:271–279

    Article  Google Scholar 

  • Croxall JP, Butchart SHM, Lascelles B, Stattersfield AJ, Sullivan B, Symes A, Taylor P (2012) Seabird conservation status, threats and priority actions: a global assessement. Bird Conserv Int 22:1–34

    Article  Google Scholar 

  • Diefenbach DR, Marshall MR, Mattice JA, Brauning DW (2007) Incorporating availability for detection in estimates of bird abundance. Auk 124:96–106

    Article  Google Scholar 

  • Frederiksen M, Edwards M, Richardson AJ, Halliday NC, Wanless S (2006) From plankton to top predators: bottom-up control of a marine food web across four trophic levels. J Anim Ecol 75:1259–1268

    Article  PubMed  Google Scholar 

  • Gerrodette T (1987) A power analysis for detecting trends. Ecology 68:1364–1372

    Article  Google Scholar 

  • Hounsome MV, Insley H, Elliott S, Graham KL, Mayhew P (2006) Monitoring European storm-petrels Hydrobates pelagicus: a comparison of the results provided by mark/recapture and tape response methods. Atl Seab 8:5–20

    Google Scholar 

  • Isaksen K, Bakken V (1995) Estimation of the breeding density of little auk (Alle alle). In Isaksen K, Bakken V (eds) Seabird populations in the Northern Barents Sea. Meddelelser 135, Norsk Polarinstitutt, Oslo, pp 37–48

  • Jenouvrier S, Barbraud C, Weimerskirch H (2006) Sea ice affects the population dynamics of Adélie penguins in Terre Adélie. Polar Biol 29:413–423

    Article  Google Scholar 

  • Lacan F (1971) Observations écologiques sur le pétrel de Wilson (Oceanites oceanicus) en Terre Adélie. Oiseau RFO 41:65–89

    Google Scholar 

  • Lawton K, Robertson G, Kirkwood R, Valencia J, Schlatter R, Smith D (2006) An estimate of population sizes of burrowing seabirds at the Diego Ramirez archipelago, Chile, using distance sampling and burrow-scoping. Polar Biol 29:229–238

    Article  Google Scholar 

  • Marchant S, Higgins PJ (1990) Handbook of Australian, New Zealand and Antarctic Birds. Ratites to ducks, vol 1. Oxford University Press, Melbourne

    Google Scholar 

  • Matthews LH (1949) The origin of stomach oils in the petrels, with comparative observations on the avian proventriculus. Ibis 91:373–392

    Article  Google Scholar 

  • Micol T, Jouventin P (2001) Long-term population trends in seven Antarctic seabirds at Pointe Géologie (Terre Adélie): human impact compared with environmental change. Polar Biol 24:175–185

    Article  Google Scholar 

  • Montevecchi WA (1993) Birds as indicators of change in marine prey stocks. In: Furness RW, Greenwood JJD (eds) Birds as monitors of environmental change. Chapman & Hall, London, pp 217–266

    Chapter  Google Scholar 

  • Mougin JL (1968) Etude écologique de quatre espèces de petrels antarctiques. Oiseau RFO 38:1–52

    Google Scholar 

  • Nichols JD, Hines JE, Sauer JR, Fallon FW, Fallon JE, Heglund PJ (2000) A double-observer approach for estimating detection probability and abundance from point counts. Auk 117:393–408

    Article  Google Scholar 

  • Olivier F, Wotherspoon SJ (2006) Distribution and abundance of Wilson’s storm petrels Oceanites oceanicus at two locations in East Antarctica: testing habitat selection models. Polar Biol 29:878–892

    Article  Google Scholar 

  • Orgeira JL (1997) Nidificacion y habitat del Petrel de Wilson (Oceanites oceanicus) en Puerta Cierva, Costa de Danco, Peninsula Antarctica. Ornithol Neotropical 8:49–56

    Google Scholar 

  • Parker GC, Rexer-Huber K (2016) Guidelines for designing burrowing petrel surveys to improve population estimate precision. Agreement on the Conservation of Albatrosses and Petrels. http://www.acap.aq/en/resources/acap-conservation-guidelines. Accessed 13 Jan 2017

  • Pryor ME (1968) The avifauna of Haswell Island, Antarctica. Antarct Res Ser 12:191–212

    Google Scholar 

  • Quillfeldt P (2001) Variation in breeding success in Wilson’s storm petrels: influence of environmental factors. Antarct Sci 13:400–409

    Article  Google Scholar 

  • Ratcliffe N, Vaughan D, Whyte C, Shepherd M (1998) Development of playback census methods for Storm Petrels Hydrobates pelagicus. Bird Study 45:302–312

    Article  Google Scholar 

  • Reyes-Arriagada R, Campos-Ellwanger P, Schlatter RP, Baduini C (2007) Sooty shearwater (Puffinus griseus) on Guafo Isla, d: the largest seabird colony in the world? Biodivers Conserv 16:913–930

    Article  Google Scholar 

  • Roberts B (1940) The life cycle of Wilson’s storm petrel Oceanites oceanicus (Kuhl). Scient Rep Br Graham Ld Exped 2:141–194

    Google Scholar 

  • Sanz-Aguilar A, Massa B, Lo Valco F, Oro D, Minguez E, Tavecchia G (2009) Contrasting age-specific recruitment and survival at different spatial scales: a case study with the European storm petrel. Ecography 32:637–646

    Article  Google Scholar 

  • Soanes LM, Thomas RJ, Bolton M (2012) Evaluation of field and analytical methods for estimating the population size of burrow-nesting seabirds from playback surveys. Bird Study 59:353–357

    Article  Google Scholar 

  • Southwell DM, Einoder LD, Emmerson LM, Southwell CJ (2011) Using the double-observer method to estimate detection probability of two cavity-nesting seabirds in Antarctica: the snow petrel (Pagodroma nivea) and the Wilson’s storm petrel (Oceanites oceanicus). Polar Biol 34:1467–1474

    Article  Google Scholar 

  • Sydeman WJ, Nur N, McLaren EB, McChesney GJ (1998) Status and trends of the ashy storm-petrel on southeast Farallon Island, California, based upon capture-recapture analyses. Condor 100:438–447

    Article  Google Scholar 

  • QGIS Development Team (2013) QGIS Geographic Information System. Open Source Geospatial Foundation. http://qgis.osgeo.org

  • Thomas T (1986) L’effectif des oiseaux nicheurs de l’archipel de Pointe Géologie (Terre Adélie) et son évolution au cours des trente dernières années. Oiseau RFO 56:349–368

    Google Scholar 

  • Thomas L, Laake JL, Rexstad E, Strindberg S, Marques FFC, Buckland ST, Borchers DL, Anderson DR, Burnham KP, Burt ML, Hedley SL, Pollard JH, Bishop JRB, Marques TA (2009) Distance 6.0. Release 2. Research Unit for Wildlife population Assessment, University St Andrews, UK

  • Warham J (1977) The incidence, function and ecological significance of petrel stomach oils. Proc NZ Ecol Soc 24:84–93

    Google Scholar 

  • Warham J (1990) The petrels: their ecology and breeding systems. Academic Press, London

    Google Scholar 

  • Warham J, Watts R, Daintry RJ (1976) The composition, energy content and function of the stomach oils of petrels (order Procellariiforms). J Exp Mar Biol Ecol 23:1–13

    Article  CAS  Google Scholar 

  • Wasilewski A (1986) Ecological aspects of the breeding cycle in the Wilson’s storm petrel, Oceanites oceanicus (Kuhl), at King George Island (South Shetland Islands, Antarctica). Pol Polar Res 7:173–216

    Google Scholar 

  • Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations. Academic Press, San Diego

    Google Scholar 

Download references

Acknowledgements

This project was supported by the French Polar Institute (IPEV, program 109, H. Weimerskirch) and Terres Australes et Antarctiques Françaises. We thank Duane R. Diefenbach and five anonymous reviewers for very helpful comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Barbraud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbraud, C., Vasseur, J. & Delord, K. Using distance sampling and occupancy rate to estimate abundance of breeding pairs of Wilson’s Storm Petrel (Oceanites oceanicus) in Antarctica. Polar Biol 41, 313–322 (2018). https://doi.org/10.1007/s00300-017-2192-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-017-2192-2

Keywords

Navigation