Skip to main content

Advertisement

Log in

Rapid acclimation of microbes to changing substrate pools in epipelagic waters of an Antarctic polynya during austral summer 2003

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Antarctic polynyas are among the most productive areas in the ocean. They are subjected to strong temporal variations, having profound effects on the local ecosystems. We tested the changes occurring in several biogeochemical features [Chlorophyll a (Chl a), phaeopigment, dissolved and particulate organic carbon (DOC and POC) concentrations] as well as in biological dynamics (prokaryotic and nanoplanktonic abundance, heterotrophic carbon production and degradative activities) at the transition between late spring and summer in surface waters (upper 125 m) in the Terra Nova Bay polynya, in the Ross Sea. Samplings were performed from January 18 to 21 and, after an interval of almost 5 days, from January 25 to 27. The first period was characterised by spring conditions still maintained by the presence in the area of two mega-icebergs (B15 and C19), which caused a delay in the ice melting that started during the second survey. Chlorophyll a concentrations were highest during the first period, whereas phaeopigments/Chl a ratio increased during the following sampling time suggesting variations in phytoplankton biomass/physiology and a change in organic matter (OM) quality. No significant differences in DOC and POC concentration were detected between the two periods together with unvaried abundances of prokaryotes and small protists. The changes in OM over time were evidenced also by changing exoenzymatic activity patterns. Notwithstanding the general variations occurring during the surveys, heterotrophic production and prokaryotic growth were not substantially modified, suggesting a rapid (timescales of days) acclimation to changing organic matter quality for the maintenance of prokaryotic metabolic requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Arnosti C (2011) Microbial extracellular enzymes and the marine carbon cycle. Annu Rev Mar Sci 3:401–425. doi:10.1146/annurev-marine-120709-142731

    Article  Google Scholar 

  • Arrigo KR, McClain CR (1994) Spring phytoplankton production in the western Ross Sea. Science 266:261–263. doi:10.1126/science.266.5183.261

    Article  CAS  PubMed  Google Scholar 

  • Arrigo KR, Thomas DN (2004) Large scale importance of sea ice biology in the Southern Ocean. Antarct Sci 16(4):471–486. doi:10.1017/S0954102004002263

    Article  Google Scholar 

  • Arrigo KR, van Dijken GL (2003a) Impact of iceberg C-19 on Ross Sea primary production. Geophys Res Lett 30(16):1836. doi:10.1029/2003GL017721

    Article  Google Scholar 

  • Arrigo KR, van Dijken GL (2003b) Phytoplankton dynamics within 37 Antarctic coastal polynya systems. J Geophys Res 108(C8):3271. doi:10.1029/2002JC001739

    Article  Google Scholar 

  • Arrigo KR, van Dijken GL (2004) Annual changes in sea-ice, chlorophyll a, and primary production in the Ross Sea, Antarctica. Deep-Sea Res II 51(1–3):117–138. doi:10.1016/j.dsr2.2003.04.003

    Article  CAS  Google Scholar 

  • Arrigo KR, Weiss AM, Smith WO Jr (1998) Physical forcing of phytoplankton dynamics in the southwestern Ross Sea. J Geophys Res 103:1007–1021. doi:10.1029/97JC02326

    Article  CAS  Google Scholar 

  • Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5:782–791. doi:10.1038/nrmicro1747

    Article  CAS  PubMed  Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Article  Google Scholar 

  • Baltar F, Legrand C, Pinhassi J (2016) Cell-free extracellular enzymatic activity is linked to seasonal temperature changes in the Baltic Sea. Biogeosciences 13:2815–2821. doi:10.5194/bg-2015-639

    Article  Google Scholar 

  • Bird DF, Karl DM (1999) Uncoupling of bacteria and phytoplankton during the austral spring bloom in Gerlache Strait, Antarctic Peninsula. Aquat Microb Ecol 19:13–27

    Article  Google Scholar 

  • Carlson CA, Ducklow HW, Smith WO, Hansell DA (1998) Carbon dynamics during spring blooms in the Ross Sea polynya and the Sargasso Sea: contrasts in dissolved and particulate organic carbon partitioning. Limnol Oceanogr 43:375–386. doi:10.4319/lo.1998.43.3.0375

    Article  CAS  Google Scholar 

  • Carlson CA, Hansell DA, Peltzer ET, Smith WO Jr (2000) Stocks and dynamics of dissolved and particulate organic matter in the Southern Ross Sea, Antarctica. Deep-Sea Res II 47:3201–3226. doi:10.1016/S0967-0645(00)00065-5

    Article  CAS  Google Scholar 

  • Catalano G, Budillon G, La Ferla R, Povero P, Ravaioli M, Saggiomo V, Accornero A, Azzaro M, Carrada GC, Giglio F, Langone L, Mangoni O, Misic C, Modigh M (2010) The Ross Sea. In: Liu L, Atkinson K-K, Quinones L, Talaue-McManus R (eds) Carbon and nutrient fluxes in continental margins: a global synthesis. Springer, New York, pp 303–318

    Google Scholar 

  • Cauwet G (1994) HTCO method for dissolved organic carbon analysis in influence of catalyst on blank estimation. Mar Chem 47:55–64. doi:10.1016/0304-4203(94)90013-2

    Article  CAS  Google Scholar 

  • Celussi M, Del Negro P (2012) Microbial degradation at a shallow coastal site: long-term spectra and rates of exoenzymatic activities in the NE Adriatic Sea. Estuar Coast Shelf Sci 115:75–86. doi:10.1016/j.ecss.2012.02.002

    Article  CAS  Google Scholar 

  • Celussi M, Balestra C, Fabbro C, Crevatin E, Cataletto B, Fonda Umani S, Del Negro P (2008) Organic-matter degradative potential of Halomonas glaciei isolated from frazil ice in the Ross Sea (Antarctica). FEMS Microbiol Ecol 65:504–512. doi:10.1111/j.1574-6941.2008.00551.x

    Article  CAS  PubMed  Google Scholar 

  • Celussi M, Cataletto B, Fonda Umani S, Del Negro P (2009a) Depth profiles of bacterioplankton assemblages and their activities in the Ross Sea. Deep-Sea Res I 56:2193–2205. doi:10.1016/j.dsr.2009.09.001

    Article  CAS  Google Scholar 

  • Celussi M, Paoli A, Crevatin E, Bergamasco A, Margiotta F, Saggiomo V, Fonda Umani S, Del Negro P (2009b) Short-term under-ice variability of prokaryotic plankton communities in coastal Antarctic waters (Cape Hallett, Ross Sea). Estuar Coast Shelf Sci 81:491–500. doi:10.1016/j.ecss.2008.12.014

    Article  Google Scholar 

  • Chisholm SW (2000) Oceanography: stirring times in the Southern Ocean. Nature 407:685–687. doi:10.1038/35037696

    Article  CAS  PubMed  Google Scholar 

  • Cifuentes LA, Sharp JH, Forgel ML (1988) Stable carbon and nitrogen isotope biogeochemistry in the Delaware estuary. Limnol Oceanogr 33:1102–1115. doi:10.4319/lo.1988.33.5.1102

    Article  CAS  Google Scholar 

  • DiTullio GR, Smith WO Jr (1996) Spatial patterns in phytoplankton biomass and pigment distributions in the Ross Sea. J Geophys Res 101:18467–18478. doi:10.1029/96JC00034

    Article  CAS  Google Scholar 

  • Duarte CM, Agustí S, Vaqué D, Agawin NSR, Felipe J, Casamayor EO, Gasol JM (2005) Experimental test of bacteria-phytoplankton coupling in the Southern Ocean. Limnol Oceanogr 50:1844–1854. doi:10.4319/lo.2005.50.6.1844

    Article  CAS  Google Scholar 

  • Ducklow HW, Carlson CA, Smith WO Jr (1999) Bacterial growth in experimental plankton assemblages and seawater cultures from the Phaeocystis antarctica blooms in the Ross Sea, Antarctica. Aquat Microb Ecol 19:215–277

    Article  Google Scholar 

  • Fandino LB, Riemann L, Steward GF, Long RA, Azam F (2001) Variations in bacterial community structure during a dinoflagellate bloom. Aquat Microb Ecol 23:119–130. doi:10.3354/ame023119

    Article  Google Scholar 

  • Fonda Umani S, Accornero A, Budillon G, Capello M, Tucci S, Cabrini M, Del Negro P, Monti M, De Vittor C (2002) Particulate matter and plankton dynamics in the Ross Sea Polynya of Terra Nova Bay during the Austral Summer 1997/1998. J Mar Syst 36:29–49. doi:10.1016/S0924-7963(02)00133-1

    Article  Google Scholar 

  • Fuhrman JA, Azam F (1982) Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar Biol 66:109–120. doi:10.1007/BF00397184

    Article  Google Scholar 

  • Garrison DL, Gibson A, Kunze H, Gowing MM, Vickers CL, Mathot S, Bayre RC (2003) The Ross Sea Polynya Project: diatom- and phaeocystis-dominated phytoplankton assemblages in the Ross Sea, Antarctica, 1994–1996. In: Ditullio GR, Dunbar RB (eds) Biogeochemistry of the Ross Sea. American Geophysical Union, Washington, D. C. doi:10.1029/078ARS04

    Google Scholar 

  • Giering SLC, Sanders R, Lampitt RS, Anderson TR, Tamburini C, Boutrif M, Zubkov MV, Marsay CM, Henson SA, Saw K, Cook K, Mayor DJ (2014) Reconciliation of the carbon budget in the ocean’s twilight zone. Nature 507:480–483. doi:10.1038/nature13123

    Article  CAS  PubMed  Google Scholar 

  • Hansell DA (2013) Recalcitrant dissolved organic carbon fractions. Annu Rev Mar Sci 5:421–445. doi:10.1146/annurev-marine-120710-100757

    Article  Google Scholar 

  • Hansell DA, Carlson CA, Repeta DJ, Schlitzer R (2009) Dissolved organic matter in the ocean. Oceanography 22:202–211. doi:10.5670/oceanog.2009.109

    Article  Google Scholar 

  • Hoppe H-G (1983) Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar Ecol Prog Ser 11:299–308

    Article  CAS  Google Scholar 

  • Hoppe H-G (1993) Use of fluorogenic model substrates for extracellular enzyme activity (EEA) measurement of bacteria. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Current methods in aquatic microbial ecology. CRC Press, Boca Raton, pp 423–431

    Google Scholar 

  • Hyun J-H, Kim S-H, Yang EJ, Choi A, Lee SH (2016) Biomass, production, and control of heterotrophic bacterioplankton during a late phytoplankton bloom in the Amundsen Sea Polynya, Antarctica. Deep-Sea Res II 123:102–112. doi:10.1016/j.dsr2.2015.10.001

    Article  Google Scholar 

  • Kirchman DL, Morán XAG, Ducklow HW (2009) Microbial growth in the polar oceans—role of temperature and potential impact of climate change. Nat Rev Microbiol 7:451–459. doi:10.1038/nrmicro2115

    CAS  PubMed  Google Scholar 

  • Lo Giudice A, Caruso C, Mangano S, Bruni V, De Domenico M, Michaud L (2012) Marine bacterioplankton diversity and community composition in an antarctic coastal environment. Microb Ecol 63:210–223. doi:10.1007/s00248-011-9904-x

    Article  PubMed  Google Scholar 

  • Lochte K, Bjornsen PK, Giesenhagen H, Weber A (1997) Bacterial standing stock and production and their relation to the phytoplankton in the Southern Ocean. Deep-Sea Res II 44:321–340. doi:10.1016/S0967-0645(96)00081-1

    Article  CAS  Google Scholar 

  • Lorenzen C, Jeffrey J (1980) Determination of chlorophyll in sea water. UNESCO Tech Pap Mar Sci 35:1–20

    Google Scholar 

  • Mangoni O, Modigh M, Conversano F, Carrada GC, Saggiomo V (2004) Effects of summer ice coverage on phytoplankton assemblages in the Ross Sea, Antarctica. Deep-Sea Res I 51:1601–1617. doi:10.1016/j.dsr.2004.07.006

    Article  CAS  Google Scholar 

  • Misic C, Povero P, Fabiano M (2002) Ectoenzymatic ratios in relation to particulate organic matter distribution (Ross Sea, Antarctica). Microb Ecol 44:224–234. doi:10.1007/s00248-002-2017-9

    Article  CAS  PubMed  Google Scholar 

  • Misic C, Covazzi Harriague A, Mangoni O, Aulicino G, Castagno P, Cotroneo Y (2017) Effects of physical constraints on the lability of POM during summer in the Ross Sea. J Mar Sys 166:132–143. doi:10.1016/j.jmarsys.2016.06.012

    Article  Google Scholar 

  • Monticelli LS, La Ferla R, Maimone G (2003) Dynamics of bacterioplankton activities after a summer phytoplankton bloom period in Terra Nova Bay. Antarct Sci 15:85–93. doi:10.1017/S0954102003001081

    Article  Google Scholar 

  • Obernosterer I, Christak U, Lefèvre D, Catala P, Van Wambeke F, Lebaron P (2008) Rapid bacterial mineralization of organic carbon produced during a phytoplankton bloom induced by natural iron fertilization in the Southern Ocean. Deep-Sea Res II 55:777–789. doi:10.1016/j.dsr2.2007.12.005

    Article  Google Scholar 

  • Pearce I, Davidson AT, Bell EM, Wright S (2007) Seasonal changes in the concentration and metabolic activity of bacteria and viruses at an Antarctic coastal site. Aquat Microb Ecol 47:11–23. doi:10.3354/ame047011

    Article  CAS  Google Scholar 

  • Pomeroy LR, Wiebe WJ (2001) Temperature and substrate as interactive limiting factors for marine heterotrophic bacteria. Aquat Microb Ecol 23:187–204. doi:10.3354/ame023187

    Article  Google Scholar 

  • Porter K, Feig YS (1980) The use of DAPI for identify and counting aquatic microflora. Limnol Oceanogr 25:943–948. doi:10.4319/lo.1980.25.5.0943

    Article  Google Scholar 

  • Pusceddu A, Cattaneo-Vietti R, Albertelli G, Fabiano M (1999) Origin, biochemical composition and vertical flux of particulate organic matter under the pack ice in Terra Nova Bay (Ross Sea, Antarctica). Polar Biol 22:124–132. doi:10.1007/s003000050399

    Article  Google Scholar 

  • Rivaro P, Ianni C, Massolo S, Abelmoschi ML, De Vittor C, Frache R (2011) Distribution of dissolved labile and particulate iron and copper in Terra Nova Bay polynya (Ross Sea, Antarctica) surface waters in relation to nutrients and phytoplankton growth. Cont Shelf Res 31:879–889. doi:10.1016/j.csr.2011.02.013

    Article  Google Scholar 

  • Sala MM, Güde H (2004) Ectoenzymatic activities and heterotrophic bacteria decomposing detritus. Arch Hydrobiol 160:289–303. doi:10.1127/0003-9136/2004/0160-0289

    Article  CAS  Google Scholar 

  • Sala MM, Arrieta JM, Boras JA, Duarte CM, Vaqué D (2010) The impact of ice melting on bacterioplankton in the Arctic Ocean. Polar Biol 33:1683–1694. doi:10.1007/s00300-010-0808-x

    Article  Google Scholar 

  • Schlitzer R (2014) Ocean data view, http://odv.awi.de

  • Sedwick PN, DiTullio GR (1997) Regulation of algal blooms in Antarctic shelf waters by release of iron from melting sea ice. Geophys Res Lett 24:2515–2518. doi:10.1029/97GL02596

    Article  CAS  Google Scholar 

  • Sjöstedt J, Pontarp M, Tinta T, Alfredsson H, Turk V, Lundberg P, Hagström Å, Riemann L (2013) Reduced diversity and changed bacterioplankton community composition do not affect utilization of dissolved organic matter in the Adriatic Sea. Aquat Microb Ecol 71:15–24. doi:10.3354/ame01660

    Article  Google Scholar 

  • Smith WO Jr, Asper LV (2001) The influence of phytoplankton assemblage composition on biogeochemical characteristics and cycles in the southern Ross Sea, Antarctica. Deep-Sea Res I 48:137–161. doi:10.1016/S0967-0637(00)00045-5

    Article  CAS  Google Scholar 

  • Smith DC, Azam F (1992) A simple, economical method for measuring bacteria protein synthesis rates in sea water using 3H-leucine. Mar Microb Food Webs 6:107–114

    Google Scholar 

  • Smith WO Jr, Gordon LI (1997) Hyperproductivity of the Ross Sea (Antarctica) polynya during austral spring. Geophys Res Lett 24:233–236. doi:10.1029/96GL03926

    Article  Google Scholar 

  • Smith WO Jr, Ainley DG, Arrigo KR, Dinniman MS (2014) The oceanography and ecology of the Ross Sea. Ann Rev Mar Sci 6:469–487. doi:10.1146/annurev-marine-010213-135114

    Article  PubMed  Google Scholar 

  • Sullivan CW, Arrigo KR, McClain CR, Comiso JC, Firestone J (1993) Distributions of phytoplankton blooms in the Southern Ocean. Science 262:1832–1837. doi:10.1126/science.262.5141.1832

    Article  CAS  PubMed  Google Scholar 

  • Sweeney C, Smith WO Jr, Hales B, Bidigare RR, Carlson CA, Codispoti LA, Gordon LI, Hansell DA, Millero FJ, Park M, Takahashi T (2000) Nutrient and carbon removal ratios and fluxes in the Ross Sea, Antarctica. Deep-Sea Res II 47:3395–3421. doi:10.1016/S0967-0645(00)00073-4

    Article  CAS  Google Scholar 

  • Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM et al (2012) Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336:608–611. doi:10.1126/science.1218344

    Article  CAS  PubMed  Google Scholar 

  • UNESCO (1994) Protocols for the joint global ocean flux study (JGOFS) core measurements. UNESCO, Paris, p 170

    Google Scholar 

  • Williams WJ, Carmack EC, Ingram RG (2007) Physical oceanography of polynyas. In: Smith WO, Barber DG (eds) Polynyas: windows to the world. Elsevier, Amsterdam, pp 55–87

    Chapter  Google Scholar 

Download references

Acknowledgements

This study was carried out as part of the Italian National Program for Research in Antarctica (PNRA, CLIMA Project). The help of the crew on the R.V. Italica and ENEA personnel is kindly acknowledged. We are grateful to E. Crevatin for nanoplankton data and to C. Manno for POC data. A. Bergamasco helped us with the description of thermohaline properties. The constructive comments of the editor (D. Piepenburg) and of three anonymous reviewers helped improve the overall merit of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Celussi.

Additional information

Paola Del Negro and Mauro Celussi have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 47 kb)

Supplementary material 2 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Negro, P., Celussi, M., De Vittor, C. et al. Rapid acclimation of microbes to changing substrate pools in epipelagic waters of an Antarctic polynya during austral summer 2003. Polar Biol 41, 1–10 (2018). https://doi.org/10.1007/s00300-017-2165-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-017-2165-5

Keywords

Navigation