Skip to main content

Advertisement

Log in

Nutrient limitation status of Arctic lakes affects the responses of Cyclotella sensu lato diatom species to light: implications for distribution patterns

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Changing environmental conditions in the Arctic have caused widespread but disparate changes in the relative abundances of diatoms in the Cyclotella sensu lato group since 1850 across Arctic lakes. To better understand the mechanisms behind these species changes, we investigated how the nutrient limitation status of a lake alters the responses of three common Cyclotella sensu lato taxa to light. To assess this, we collected source water with the natural phytoplankton assemblages from lakes in southwest Greenland with different nutrient limitation status (phosphorus (P)-limited or nitrogen & phosphorus (N&P) co-limited). The responses of Lindavia bodanica, Lindavia radiosa, and Discostella stelligera to light levels (low, moderate, or high) and nutrients (limited or replete) were tested using a factorial design. The vertical distributions of these taxa across 20 lakes of varying nutrient limitation status and water transparency were also assessed. We found that light affected Cyclotella growth rates, cell densities, and distribution patterns differently depending on lake nutrient limitation status. L. bodanica fared best at low light under P-limitation, and at high light under N&P co-limitation, while the pattern was generally opposite for D. stelligera. For L. radiosa, regardless of nutrient limitation status, moderate-to-high light was important, with this species absent from lakes with lower light conditions. This study reveals that environmental change affects these species via complex interactions between nutrient and light availability, and helps to clarify some of the complex distribution patterns of planktonic diatom taxa found in lakes of many areas around the Arctic as well as at lower latitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson JN, Stedmon CA (2007) The effect of evapoconcentration on dissolved organic carbon concentration and quality in lakes of SW Greenland. Freshw Biol 52:280–289

    Article  CAS  Google Scholar 

  • Anderson NJ, Harriman R, Ryves DB, Patrick ST (2001) Dominant factors controlling variability in the ionic composition of west Greenland lakes. Arct Antarct Alp Res 33:418–425

    Article  Google Scholar 

  • Ask J, Karlsson J, Persson L, Ask P, Byström P, Jansson M (2009) Terrestrial organic matter and light penetration: effects on bacterial and primary production in lakes. Limnol Oceanogr 54:2034–2040. doi:10.4319/lo.2009.54.6.2034

    Article  Google Scholar 

  • Bergström AK (2010) The use of TN:TP and DIN:TP ratios as indicators for phytoplankton nutrient limitation in oligo- trophic lakes affected by N deposition. Aquat Sci 72:277–281. doi:10.1007/s00027-010-0132-0

    Article  Google Scholar 

  • Boeff KA, Strock KE, Saros JE (2016) Evaluating planktonic diatom response to climate change across three lakes with differing morphometry. J Paleolimnol 56:33–47. doi:10.1007/s10933-016-9889-z

    Article  Google Scholar 

  • Brutemark A, Rengefors K, Anderson NJ (2006) An experimental investigation of phytoplankton nutrient limitation in two contrasting low Arctic lakes. Polar Biol 29:487–494

    Article  Google Scholar 

  • Canham CD, Pace ML, Papaik MJ, Primack AGB, Roy KM, Maranger RJ, Curran RP, Spada DM (2004) A spatially explicit watershed-scale analysis of dissolved organic carbon in Adirondack lakes. Ecol Appl 14(3):839–854

    Article  Google Scholar 

  • Cole JJ (2009) Production in pristine lakes. Nature 460:463–464. doi:10.1038/460463a

    Article  CAS  PubMed  Google Scholar 

  • Daley RJ, Brown SR (1973) Chlorophyll, nitrogen and photosynthetic patterns during growth and senescenceof two blue- green algae. J Phycol 9:395–401. doi:10.1111/j.1529-8817.1973.tb04112.x

    CAS  Google Scholar 

  • Falkowski PG, Raven JA (2007) Light absorption and energy transfer in the photosynthetic apparatus 44. Aquatic photosynthesis, 2nd edn. Princeton University Press, Princeton, pp 44–80

    Google Scholar 

  • Fee EJ, Hecky RE, Kasian SEM, Cruikshank DR (1996) Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnol Oceanogr 41(5):912–920. doi:10.4319/lo.1996.41.5.0912

    Article  CAS  Google Scholar 

  • Finkel ZV (2001) Light absorption and size scaling of light-limited metabolism in marine diatoms. Limnol Oceanogr 46:86–94

    Article  CAS  Google Scholar 

  • Finkel ZV, Irwin AJ, Schofield O (2004) Resource limitation alters the 3/4 size scaling of metabolic rates in phytoplankton. Mar Ecol Progr Ser 273:269–279

    Article  Google Scholar 

  • Frey KE, McClelland JW (2009) Impacts of permafrost degradation on Arctic river biogeo- chemistry. Hydrol Process 23:169–182

    Article  CAS  Google Scholar 

  • Fritz SC, Anderson NJ (2013) The relative influences of climate and catchment processes on Holocene lake development in glaciated regions. J Paleolimnol 49:349–362. doi:10.1007/s10933-013-9684-z

    Article  Google Scholar 

  • Gregory-Eaves I, Smol JP, Finney BP, Lean DRS, Edwards E (2000) Characteristics and variation in lakes along a north-south transect in Alaska. Fundam Appl Limnol 147:193–223

    Article  CAS  Google Scholar 

  • Hogan EJ, McGowan S, Anderson NJ (2014) Nutrient limitation of periphyton growth in Arctic lakes in south-west Greenland. Polar Biol 37:1331–1342

    Article  Google Scholar 

  • Holtgrieve GW, Schindler DE, Hobbs WO, Leavitt PR, Ward EJ, Bunting L, Chen G, Finney BP, Gregory-Eaves I, Holmgren S, Lisac MJ, Lisi PJ, Nydick K, Rogers LA, Saros JE, Selbie DT, Shapley MD, Walsh PB, Wolfe AP (2011) A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the northern hemisphere. Science 334:1545–1548

    Article  CAS  PubMed  Google Scholar 

  • Horn H, Paul L, Horn W, Petzolt T (2011) Long-term trends in the diatom composition of the spring bloom of a German reservoir: is Aulacoseira subarctica favored by warm winters? Freshw Biol 56:2483–2499

    Article  Google Scholar 

  • Houk V, Klee R (2004) The stelligeroid taxa of the genus Cyclotella (Kutz.) Brebisson (Bacillariophyceae) and their transfer to the new genus Discostella gen. nov. Diatom Res 19:203–228

    Article  Google Scholar 

  • Interlandi SJ, Kilham SS, Theriot EC (1999) Responses of phytoplankton to varied resource availability in large lakes of the Greater Yellowstone Ecosystem. Limnol Oceanogr 44:668–682

    Article  CAS  Google Scholar 

  • Kardinaal WEA, Tonk L, Janse I, Hol S, Huisman J, Visser PM (2007) Competition for light between toxic and non-toxic strains of the harmful cyanobacterium Microcystis. Appl Environ Microbiol 73:2939–2946

    Article  PubMed  PubMed Central  Google Scholar 

  • Karlsson J, Byström P, Ask J, Ask P, Persson L, Jansson M (2009) Light limitation of nutrient-poor lake ecosystems. Nature 460:506–509. doi:10.1038/nature08179

    Article  CAS  PubMed  Google Scholar 

  • Key T, McCarthy A, Campbell DA, Six C, Roy S, Finkel ZV (2010) Cell size trade-offs govern light exploitation strategies in marine phytoplankton. Environ Microbiol 12:95–104

    Article  CAS  PubMed  Google Scholar 

  • Kraemer BM, Anneville O, Chandra S, Dix M, Kuusisto E, Livingstone DM, Rimmer A, Schladow SG, Silow E, Sitoki LM, Tamatamah R, Vadeboncoeur Y, Mclntyre PB (2015) Morphometry and average temperature affect lake stratification responses to climate change. Geophys Res Lett 42:4981–4988. doi:10.1002/2015GL064097

    Article  Google Scholar 

  • Larkum A, Barett J (1983) Light harvesting processes in algae. Adv Bot Res 10:1–219

    Article  CAS  Google Scholar 

  • Law AC, Anderson NJ, McGowan S (2015) Spatial and temporal variability of lake ontogeny in south-western Greenland. Quat Sci Rev 126:1–16

    Article  Google Scholar 

  • Lepetit B, Goss R, Jakob T, Wilhelm C (2012) Molecular dynamics of the diatom thylakoid membrane under different light conditions. Photosynth Res 111:245–257. doi:10.1007/s11120-011-9633-5 PMID:21327535

    Article  CAS  PubMed  Google Scholar 

  • Levine MA, Whalen SC (2001) Nutrient limitation of phytoplankton production in Alaskan Arctic foothill lakes. Hydrobiologia 455:189–201

    Article  Google Scholar 

  • Litchman E (1998) Population and community responses of phytoplankton to fluctuating light. Oecologia 117:247–257

    Article  PubMed  Google Scholar 

  • Litchman E (2003) Competition and coexistence of phytoplankton under fluctuation light: experiments with two cyanobacteria. Aquat Microb Ecol 31:241–248

    Article  Google Scholar 

  • Malik HI, Saros JE (2016) Effects of temperature, light and nutrients on five Cyclotella sensu lato taxa assessed with in situ experiments in Arctic lakes. J Plankton Res 38(3):431–442. doi:10.1093/plankt/fbw002

    Article  Google Scholar 

  • Markager S, Vincent WF, Tang EPY (1999) Carbon fixation in high Arctic lake: implications of low temperature for photosynthesis. 44:597–607. Limnol Oceanogr 44:597–607

    Article  CAS  Google Scholar 

  • Miller MC, Hatter GR, Spatt P, Westlake P, Yeakel D (1986) Primary production and its control in Toolik Lake. Alaska Fundam Appl Limnol 74:97–131

    Google Scholar 

  • Nakov T, Guillory WX, Julius ML, Theriot EC, Alverson AJ (2015) Towards a phylogenetic classification of species belonging to the diatom genus Cyclotella (Bacillariophyceae): transfer of species formerly placed in Puncticulata, Handmannia, Pliocaenicus and Cyclotella to the genus Lindavia. Phytotaxa 217:249–264

    Article  Google Scholar 

  • Noble PJ, Chandra S, Kreamer DK (2013) Dynamics of phytoplankton distribution in relation to stratification and winter precipitation, Fallen Leaf Lake, California. West N Am Nat 73:302–322

    Article  Google Scholar 

  • Ogbebo E, Evans MS, Waiser MJ, Tumber VP, Keating JJ (2009) Nutrient limitation of phytoplankton growth in Arctic lakes of the lower Mackenzie River Basin, northern Canada. Can J Fish Aquat Sci 66:247–260

    Article  CAS  Google Scholar 

  • Passarge L, Hol S, Escher M, Huisman J (2006) Competition for nutrients and light: stable coexistence, alternative stable states or competitive exclusion? Ecol Monogr 76:57–72

    Article  Google Scholar 

  • Perren BB, Douglas MSV, Anderson NJ (2009) Diatoms reveal complex spatial and temporal patterns of recent limnological change in West Greenland. J Paleolimnol 42:233–247

    Article  Google Scholar 

  • Perren BB, Anderson NJ, Douglas MSV, Fritz SC (2012) The influence of temperature, moisture, and eolian activity on Holocene lake development in West Greenland. J Paleolimnol 48:223–239

    Article  Google Scholar 

  • Porra RJ, Grimme LH (1974) Chlorophyll synthesis and intracellular fluctuations of 5-aminolaevulinate formation during regreening of nitrogen-deficient Chlorella fusca. Arch Biochem Biophys 148:37–43

    Article  Google Scholar 

  • Reyes FR, Lougheed VL (2015) Rapid nutrient release from permafrost thaw in Arctic aquatic ecosystems. Arct Antarct and Alp Res 47:35–48

    Article  Google Scholar 

  • Reynolds CS (1984) The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge

    Google Scholar 

  • Rigler FH (1978) Limnology in the Arctic: a case study of Char Lake. Proc Int Assoc Theor Appl Limnol (SIL) 20:127–140

    Google Scholar 

  • Rippey B, Anderson NJ, Foy RH (1997) Accuracy of diatom-inferred total phosphorus concentrations and the accelerated eutrophication of a lake due to reduced flushing and increased internal loading. Can J Fish Aquat Sci 54:2637–2646

    Article  CAS  Google Scholar 

  • Saros JE, Stone JR, Pederson GT, Slemmons KEH, Spanbauer T, Schliep A, Cahl D, Williamson CE, Engstrom DR (2012) Climate-induced changes in lake ecosystem structure inferred from coupled neo- and paleo-ecological approaches. Ecology 93:2155–2164

    Article  PubMed  Google Scholar 

  • Saros JE, Strock KE, Mccue J, Hogan E, Anderson NJ (2014) Response of Cyclotella species to nutrients and incubation depth in Arctic lakes. J Plankton Res 36(2):450–460

    Article  Google Scholar 

  • Saros JE, Osburn CL, Northington RM, Birkel SD, Auger JD, Stedmon CA, Anderson NJ (2015) Recent decrease in DOC concentrations in Arctic lakes of southwest Greenland. Geophys Res Lett 42:6703–6709. doi:10.1002/2015GL065075

    Article  CAS  Google Scholar 

  • Saros JE, Northington RM, Osburn CL, Anderson NJ (2016) Thermal stratification in small Arctic lakes of southwest Greenland affected by water transparency and epilimnetic temperatures: thermal Stratification of Arctic Lakes. Limnol Oceanogr 61:1530–1542

    Article  CAS  Google Scholar 

  • Schindler DW, Welch HE, Kalff J, Brunskdl GJ, Kritsch N (1974) Physical and chemical limnology of Char Lake, Cornwallis Island (75°N Lat.). J Fish Res Board Can 31:585–607

    Article  CAS  Google Scholar 

  • Schuur EAG, McGuire AD, Schädel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC, Vonk JE (2015) Climate change and the permafrost carbon feedback. Nature 520:171–179

    Article  CAS  PubMed  Google Scholar 

  • Seekell DA, Lapierre JF, Pace ML, Gudasz C, Sobel S, Tranvik LJ (2014) Regional-scale variation of dissolved organic carbon concentrations in Swedish lakes. Limnol Oceanogr 59:1612–1620

    Article  CAS  Google Scholar 

  • Silsbe GM, Smith REH, Twiss MR (2015) Quantum efficiency of phytoplankton photochemistry measured continuously across gradients of nutrients and biomass in Lake Erie (Canada and USA) is strongly regulated by light but not by nutrient deficiency. Can J Fish Aquat Sci 72:651–660

    Article  CAS  Google Scholar 

  • Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A, Pienitz R, Rühland K, Sorvari S, Antoniades D, Brooks SJ, Fallu M, Hughes M, Keatley BE, Laing TE, Michelutti N, Nazarova L, Nyman M, Paterson AM, Perren B, Quinlan R, Rautio M, Saulnier-Talbot E, Siitonen S, Solovieva N, Weckström J (2005) Climate-driven regime shifts in the biological communities of Arctic lakes. Proc Natl Acad Sci USA 102:4397–4402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snucins E, Gunn J (2000) Interannual variation in the thermal structure of clear and colored lakes. Limnol Oceanogr 45:1639–1646

    Article  Google Scholar 

  • Striegl RG, Aiken GR, Dornblaser MM, Raymond PA, Wickland KP (2005) A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophys Res Lett 32:L21413. doi:10.1029/2005GL024413

    Article  Google Scholar 

  • Surdu MC, Duguay CR, Brown LC, Fernández Prieto D (2014) Response of ice cover on shallow lakes of the North Slope of Alaska to contemporary climate conditions (1950–2011): radar remote-sensing and numerical modeling data analysis. The Cryosphere 8:167–180

    Article  Google Scholar 

  • Surdu MC, Duguay CR, Brown LC, Fernández Prieto D (2016) Evidence of recent changes in the ice regime of lakes in the Canadian High Arctic from spaceborne satellite observations. The Cryosphere 10:941–960

    Article  Google Scholar 

  • Symons CC, Arnott SE, Sweeetman JN (2012) Nutrient limitation of phytoplankton communities in Subarctic lakes and ponds in Wapusk National Park, Canada. Polar Biol 35(4):481–489

    Article  Google Scholar 

  • Syrett PJ (1981) Nitrogen metabolism of microalgae. Can Bull Fish Aqua Sci 182–210

  • Tolotti M, Thies H, Nickus U, Psenner R (2012) Temperature modulated effects of nutrients on phytoplankton changes in a mountain lake. Hydrobiologia 698:61–75

    Article  CAS  Google Scholar 

  • Townsend-Small A, McClelland JW, Holmes RM, Peterson BJ (2011) Seasonal and hydrologic drivers of dissolved organic matter and nutrients in the upper Kuparuk River, Alaskan Arctic. Biogeochemistry 103:109–124. doi:10.1007/s10533-010-9451-4

    Article  CAS  Google Scholar 

  • Weyhenmeyer GA, Karlsson J (2009) Nonlinear response of dissolved organic carbon concentrations in boreal lakes to increasing temperatures. Limnol Oceanogr 54(6):2513–2519

    Article  CAS  Google Scholar 

  • Whiteford E, McGowan S, Barry CD, Anderson NJ (2016) Seasonal and regional controls of phytoplankton production along a climate gradient in South-West Greenland during ice-cover and ice-free conditions. Arct Antarct Alp Res 48(1):139–159. doi:10.1657/AAAR0015-003

    Article  Google Scholar 

  • Williamson CE, Morris DP, Pace ML, Olson OG (1999) Dissolved organic carbon and nutrients as regulators of lake ecosystems: resurrection of a more integrated paradigm. Limnol Oceanogr 44:795–803

    Article  CAS  Google Scholar 

  • Winder M, Hunter DA (2008) Temporal organization of phytoplankton communities linked to physical forcing. Oecologia 156:179–192

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the Arctic System Science program of the US National Science Foundation (Grant #1203434 to JES). CH2 M Hill Polar Services provided logistical support for this project. We thank Kathryn Warner for field and laboratory assistance, and Nicholas John Anderson for providing the growth chamber and key pilot data for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heera I. Malik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, H.I., Northington, R.M. & Saros, J.E. Nutrient limitation status of Arctic lakes affects the responses of Cyclotella sensu lato diatom species to light: implications for distribution patterns. Polar Biol 40, 2445–2456 (2017). https://doi.org/10.1007/s00300-017-2156-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-017-2156-6

Keywords

Navigation