Skip to main content

Advertisement

Log in

Ophiuroid biodiversity patterns along the Antarctic Peninsula

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Benthic ecological surveys using standardized methods are crucial for assessing changes associated with several threats in the Southern Ocean. The acquisition of data on assemblage structure over a variety of spatial scales is important to understand the variation of biodiversity patterns. During the ANT XXIX/3 (PS81) expedition of RV Polarstern, three different regions at the tip of the Antarctic Peninsula were sampled: the northwestern Weddell Sea, the Bransfield Strait, and the northern boundary of the South Shetland Archipelago in the Drake Passage. The aim of this study was to characterize the distribution and biodiversity patterns of ophiuroid assemblages in these regions and depths. We quantified different community parameters in terms of the number of species, abundance, and biomass. Additionally, we calculated various components of species diversity (alpha, beta, and gamma diversity) over the three regions. Based on the benthic surveys, we collected 3331 individuals that were identified to species level (17 species). Overall, species diversity, as measured based on rarefaction, species richness and evenness estimators, was higher in the Bransfield Strait compared to the Weddell Sea and Drake Passage. Two deep stations in the Weddell Sea showed high dominance only of Ophionotus victoriae. Significant differences in the patterns of alpha diversity were found among the regions but not between depth zones, whereas beta diversity showed no differences. Regarding the resemblance among the ophiuroid assemblages of each region, there was a significant gradient from east to west with a maximum distance between the stations in the Drake Passage and the Weddell Sea. This study provides a baseline for detecting potential effects related to climate change, and it furnishes a basis for the implementation of monitoring schemes of Antarctic assemblages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson JB (1999) Antarctic marine geology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Anderson MJ (2001a) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Anderson MJ (2001b) Permutation tests for univariate or multivariate analysis of variance and regression. Can J Fish Aquat Sci 58:626–639

    Article  Google Scholar 

  • Anderson MJ, Gorley R, Clarke K (2008) PERMANOVA for PRIMER: guide to software and statistical methods. PRIMER-E Ltd, Plymouth, p 214

  • Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sanders NJ, Cornell HV, Comita LS, Davies KF, Harrison SP, Kraft NJB, Stegen JC, Swenson NG (2011) Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28

    Article  PubMed  Google Scholar 

  • Arntz WE, Brey T, Gallardo V (1994) Antarctic zoobenthos. Oceanogr Mar Biol 32:241–304

    Google Scholar 

  • Aronson RB, Thatje S, Clarke A, Peck LS, Blake DB, Wilga CD, Seibel BA (2007) Climate change and invasibility of the Antarctic benthos. Annu Rev Ecol Syst 38:129–154

    Article  Google Scholar 

  • Balsega A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143

    Article  Google Scholar 

  • Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156

    Article  PubMed  Google Scholar 

  • Barnes DKA, Conlan KW (2007) Disturbance, colonization and development of Antarctic benthic communities. Phil Trans R Soc B 362:11–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnes DKA, Peck LS (2008) Vulnerability of Antarctic shelf biodiversity to predicted climate change. Clim Res 37:149–163

    Article  Google Scholar 

  • Barnes DKA, Griffiths HJ, Kaiser S (2009) Geographic rage shift responses to climate change by Antarctic benthos: where we should look. Mar Ecol Progr Ser 393:13–26

    Article  Google Scholar 

  • Bell FJ (1902) Echinoderma. Report on the collections of Natural History made in the Antarctic Regions during the voyage of the “Southern Cross”. London, pp 214–220

  • Bell FJ (1908) Echinoderma. National Antarctic Expedition 1901–1904. Rep Nat Hist 4, Zool, London, pp 1–16

  • Bernasconi I, D’Agostino MM (1977) Ophiuroideos del mar epicontinental argentino. Rev Mus Arg Cienc Nat Bernard Rivad 5:66–114

    Google Scholar 

  • Björgo E, Johannessen OM, Miles MW (1997) Analysis of merged SMMR-SSMI time series of Arctic and Antarctic sea ice parameters 1978–1995. GRL 24(4):413–416. doi:10.1029/96GL04021

    Article  Google Scholar 

  • Brandt A, De Broyer C, De Mesel I, Ellingsen KE, Gooday AJ, Hilbig B, Linse K, Thomson MRA, Tyler PA (2007) The biodiversity of the deep Southern Ocean benthos. Phil Trans R Soc B 362:39–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brey T, Dahm C, Gorny M, Klages M, Stiller M, Arntz WE (1996) Do Antarctic benthic invertebrates show an extended level of eurybathy? Antarct Sci 8:3–6

    Article  Google Scholar 

  • Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation. Bourne Press Limited, Bournemouth

    Google Scholar 

  • Clarke A, Murphy EJ, Meredith MP, King JC, Peck LS, Barnes DKA, Smith RC (2007) Climate change and the marine ecosystem of the western Antarctic Peninsula. Phil Trans R Soc B Biol Sci 362:149–166

    Article  Google Scholar 

  • Clarke A, Griffiths HJ, Barnes DKA, Meredith MP, Grant SM (2009) Spatial variation in seabed temperatures in the Southern Ocean: implications for benthic ecology and biogeography. J Geophys Res. doi:10.1029/2008JG000886

    Google Scholar 

  • Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc Lond 345:101–118

    Article  CAS  Google Scholar 

  • Cook AJ, Fox AJ, Vaughan DG, Ferrigno DG (2005) Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science 308:541–544

    Article  CAS  PubMed  Google Scholar 

  • Dahm C (1999) Ophiuroids (Echinodermata) of southern Chile and the Antarctic: taxonomy, biomass, diet and growth of dominant species. In: Arntz W, Ríos C (eds) Magellan-Antarctic: ecosystems that drifted apart. Sci Mar 63:427–432

  • Dell RK (1972) Antarctic benthos. Adv Mar Biol 10:1–216

    Article  Google Scholar 

  • Domack E, Duran D, Leenter A, Ishman S, Doane S, McCallum S, Amblas D, Ring J, Gilbert R, Prentice M (2005) Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch. Nature 436:681–685

    Article  CAS  PubMed  Google Scholar 

  • Dorschel B, Gutt J, Huhn O, Bracher A, Huntemann M, Gebhardt C, Huneke W, Schröder M (in press) Environmental information for a marine ecosystem research approach for the northern Antarctic Peninsula (RV Polarstern Expedition PS81, ANT-XXIX/3). Polar Biol

  • Ellingsen KE (2001) Biodiversity of a continental shelf soft-sediment macrobenthos community. Mar Ecol Prog Ser 218:1–15

    Article  Google Scholar 

  • Fell HB (1961) The fauna of the Ross Sea. Part 1. Ophiuroidea. N Z Dep Sci Ind Res Bull 142:1–79

    Google Scholar 

  • Fell HB, Holzinger T, Sherraden M (1969) Ophiuroidea. Distribution of selected groups of marine invertebrates in waters south of 35°S latitude. Antarct Map Fol Ser Am Geogr Soc 11:42–43

    Google Scholar 

  • Foldvik A, Gammelsrød T, Østerhus S, Fahrbach E, Rohardt G, Schröder M, Nicholls K, Padman L, Woodgate R (2004) Ice shelf water overflow and bottom water formation in the southern Weddell Sea. J Geophys Res 109:C02015. doi:10.1029/2003JC002008

    Google Scholar 

  • Fraser WR, Hofmann EE (2003) A predator’s perspective on causal links between climate change, physical forcing and ecosystem response. Mar Ecol Prog Ser 265:1–15

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Griffiths HJ (2010) Antarctic marine biodiversity—What do we know about the distribution of life in the Southern Ocean? PLoS One 5:e11683

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutt J (2013) The expedition of the research vessel Polarstern to the Antarctic in 2013 (ANT-XXIX/3). Ber Polar Meeresforsch 665:1–151

    Google Scholar 

  • Gutt J, Bertler N, Bracegirdle TJ, Buschmann A, Comiso J, Hosie G, Isla E, Schloss IR, Smith CR, Tournadre J, Xavier JC (2015a) The Southern Ocean ecosystem under multiple climate stresses—an integrated circumpolar assessment. Glob Change Biol 21:1434–1453. doi:10.1111/geb.12794

    Article  Google Scholar 

  • Gutt J, Alvaro MC, Barco A, Böhmer A, Bracher A, David B, De Ridder C, Dorschel B, Eléaume M, Janussen D, Kersken D, López-González PJ, Martínez-Baraldés I, Schröder M, Segelken-Voigt A, Teixidó N (2015b) Macro-epibenthic communities at the tip of the Antarctic Peninsula, an ecological survey at different spatial scales. Polar Biol. doi:10.1007/s00300-015-1797-6

    Google Scholar 

  • Hendler G (1975) Adaptational significance o the pattern of ophiuroid development. Am Zool 15:691–715

    Article  Google Scholar 

  • Hendler G, Tran LU (2001) Reproductive biology of a deep-sea brittle star Amphiura carchara (Echinodermata: Ophiuroidea). Mar Biol 138:113–123

    Article  Google Scholar 

  • Hertz M (1927) Die Ophiuroiden der Deutschen Südpolar-Expedition (1901–1903). Dtsch Südpolar Exped (1901–1903) 2:1–56

    Google Scholar 

  • Hoffman JI, Peck LS, Linse K, Clarke A (2010) Strong population genetic structure in a broadcast-spawning Antarctic marine invertebrate. J Heredity 102:55–66. doi:10.1093/jhered/esq094:1-12

    Article  Google Scholar 

  • Hofmann EE, Klinck JM, Lascara CM, Smith DA (1996) Water mass distribution and circulation west of the Antarctic Peninsula and including Bransfield Strait. In: Ross RM, Hofmann EE, Quetin LB (eds) Foundations for ecological research west of the Antarctic Peninsula. American Geophysical Union, Washington, pp 61–80

    Chapter  Google Scholar 

  • Hunter RL, Halanych KM (2008) Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the Drake Passage in the Southern Ocean. J Hered 99:137–148

    Article  CAS  PubMed  Google Scholar 

  • Hunter RL, Halanych KM (2010) Phylogeography of the Antarctic planktotrophic brittle star Ophionotus victoriae reveals genetic structure inconsistent with early life history. Mar Biol 157:1693–1704

    Article  CAS  Google Scholar 

  • Jerosch K, Kuhn G, Krajnik I, Scharf FK, Dorschel B (2015) A geomorphological seabed classification for the Weddell Sea, Antarctica. Mar Geophys Res. doi:10.1007/s11001-015-9256-x

    Google Scholar 

  • Jost L, DeVries P, Walla T, Greeney H, Chao A, Ricotta C (2010) Partitioning diversity for conservation analyses. Divers Distrib 16:65–76

    Article  Google Scholar 

  • Kaiser S, Brandão SN, Brix S, Barnes DKA, Bowden DA, Ingels J, Paszkowycz M, Brandt A, Brenke N, Catarino AI, David B, Ridder C, Dubois P, Ellingsen KE, Glover AG, Griffiths HJ, Gutt J, Halanych KM, Havermans C, Held C, Janussen D, Lörz AN, Pearce DA, Pierrat B, Riehl T, Rose A, Sands CJ, Soler-Membrives A, Schüller M, Strugnell JM, Vanreusel A, Veit-Köhler G, Wilson NG, Yasuhara M (2013) Patterns, processes and vulnerability of Southern Ocean benthos: a decadal leap in knowledge and understanding. Mar Biol 160:2295–2317

    Article  Google Scholar 

  • Koehler R (1901) Echinides et Ophiures. Resultats du voyage du S.Y. Belgica 1897–1899. Buschmann, Anvers

  • Koehler R (1908) Astéries, Ophiures et Echinides de l’Expédition Antarctique Nationale Ecossaise. Trans R Soc Edinb 46:529–649

    Article  Google Scholar 

  • Koehler R (1912) Échinodermes (Aste´ries, Ophiures et Echinides). Deux Expéd Antarct Franc 1908–1910. Masson, Paris

  • Koehler R (1922) Echinodermata Ophiuroidea. Adelaide: Australasian Antarctic expedition (1911–1914). Sci Rep Ser C Zool Bot 8:1–98

    Google Scholar 

  • Koehler R (1923) Astéries et Ophiures. Further zoological results of the Swedish Antactic Expedition (1901–1903) 1:1–145

    Google Scholar 

  • Lockhart SJ, Jones CD (2008) Biogeographic patterns of benthic invertebrate megafauna on shelf areas with the Southern Ocean Atlantic sector. CCAMLR Sci 15:167–192

    Google Scholar 

  • Lourie SA, Vincent ACJ (2004) Using biogeography to help set priorities in marine conservation. Conserv Biol 18:1004–1020

    Article  Google Scholar 

  • Ludwig H (1899) Ophiuroiden. Hamburger magalhaens. Sammelr 1:1–28

    Google Scholar 

  • Lyman T (1875) Results of the Hassler expedition (excluding Ophiuroidea and Astrophytidae). Illus Cat Mus Comp Zool Harv Univ 8(2):1–43

    Google Scholar 

  • Lyman T (1882) Report on the Ophiuroidea. Rep Sci Voyage HMS Challenger 1873–1876. Zool 5(14):1–386

    Google Scholar 

  • Magurran A, McGill BJ (2011) Biological diversity. Oxford University Press, Oxford

    Google Scholar 

  • Magurran AE, Baillie SR, Buckland ST, Dick JM, Elston DA, Scott EM, Smith RI, Somerfield PJ, Watt AD (2010) Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends Ecol Evol 25:574–582

    Article  PubMed  Google Scholar 

  • Manjón-Cabeza ME, Ramos A (2003) Ophiuroid community structure of the South Shetland Islands and Antarctic Peninsula region. Polar Biol 26:691–699

    Article  Google Scholar 

  • Martín-Ledo R, López-González PJ (2014) Brittle stars from Southern Ocean (Echinodermata: Ophiuroidea). Polar Biol 37:73–88

    Article  Google Scholar 

  • Martynov A (2010) Reassessment of the classification of the Ophiuroidea (Echinodermata), based on morphological characters. I. General character evaluation and delineation of the families Ophiomyxidae and Ophiacanthidae. Zootaxa 2697:1–154

    Google Scholar 

  • Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the twentieth century. Geophys Res Lett 32:1–5

    Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being. Island Press, Washington

    Google Scholar 

  • Moles J, Figuerola B, Campanyà-Llovet N, Monleón-Getino T, Taboada S, Avila C (2014) Distribution patterns in Antarctic and Subantarctic echinoderms. Polar Biol 38:799–813

    Article  Google Scholar 

  • Montes-Hugo M, Doney SC, Ducklow HW, Fraser W, Martinson D, Stammerjohn SE, Schofield O (2009) Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science 323:1470–1473

    Article  CAS  PubMed  Google Scholar 

  • Mortensen T (1936) Echinoidea and Ophiuroidea. Discov Rep 12:199–348

    Article  Google Scholar 

  • O’Hara RB (2005) Species richness estimators: how many species can dance on the head of a pin? J Anim Ecol 74:375–386

    Article  Google Scholar 

  • O’Hara TD, Rowden AA, Bax NJ (2011) A southern hemisphere bathyal fauna is distributed in latitudinal bands. Curr Biol 21:22–230

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Ann Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Peck LS, Convey P, Barnes DKA (2006) Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biol Rev 81:75–109

    Article  PubMed  Google Scholar 

  • Piepenburg D, Schmid MK (1996) Brittle star fauna (Echinodermata: Ophiuroidea) of the Arctic northwestern Barents Sea: composition, abundance, biomass and spatial distribution. Polar Biol 16:383–392

    Article  Google Scholar 

  • Piepenburg D, von Juterzenka K (1994) Abundance, biomass and spatial distribution patterns of brittle stars (Echinodermata: Ophiuroidea) on the Kolbeinsey Ridge north of Iceland. Polar Biol 14:185–194

    Article  Google Scholar 

  • Piepenburg D, Voß J, Gutt J (1997) Assemblages of sea stars (Echinodermata: Asteroidea) and brittle stars (Echinodermata: Ophiuroidea) in the Weddell Sea (Antarctica) and off Northeast Greenland (Arctic): A comparison of diversity and abundance. Polar Biol 17:305–322

    Article  Google Scholar 

  • Sanderson WG (1996) Rarity of marine benthic species in Great Britain: development and application of assessment criteria. Aquat Conserv 6:245–256

    Article  Google Scholar 

  • Sands CJ, Griffiths HJ, Downey R, Barnes DKA, Linse K, Martín-Ledo R (2012) Observations of the ophiuroids from the West Antarctic sector of the Southern Ocean. Antarct Sci 25:3–10

    Article  Google Scholar 

  • Smale DA, Barnes DKA (2008) Likely responses of the Antarctic benthos to climate-related changes in physical disturbance during the twenty-first century, based primarily on evidence from the West Antarctic Peninsula region. Ecography 31:289–305

    Article  Google Scholar 

  • Smith CR, De Leo FC, Bernardino AF, Sweetman AK, Martinez Arbizu P (2008) Abyssal food limitation, ecosystem structure and climate change. Trends Ecol Evol 23:518–528

    Article  PubMed  Google Scholar 

  • Stammerjohn SE, Martinson DG, Smith RC, Iannuzzi RA (2008) Sea ice in the western Antarctic Peninsula region: Spatio-temporal variability from ecological and climate change perspectives. Deep Sea Res II 55:2041–2058

    Article  Google Scholar 

  • Studer T (1876) Echinodermen aus dem antarktischen Meere und zwei neue Seeigel von den Papua Inseln, gesammelt auf der Reise SMS Gazelle um die Erde. Akad Wiss, Berlin, pp 452–465

    Google Scholar 

  • Thatje S, Anger K, Calcagno JA, Lovrich GA, Pörtner H-O, Arntz WE (2005a) Challenging the cold: crabs reconquer the Antarctic. Ecology 86:619–625

    Article  Google Scholar 

  • Thatje S, Hillenbrand CD, Larter R (2005b) On the origin of Antarctic marine benthic community structure. Trends Ecol Evol 20:534–540

    Article  PubMed  Google Scholar 

  • Trimborn S, Hoppe CJ, Taylor BB, Bracher A, Hassler C (2015) Physiological characteristics of open ocean and coastal phytoplankton communities of western Antarctic peninsula and drake passage waters. Deep Sea Res I 98:115–124

    Article  CAS  Google Scholar 

  • Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD, Lagun V, Reid PA, Iagovkina S (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294

    Article  Google Scholar 

  • Ugland KI, Gray JS, Ellingsen KE (2003) The species-accumulation curve and estimation of species richness. J Anim Ecol 72:888–897

    Article  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  • Walther GR, Roques A, Hulme PE, Sykes MT, Pysek P, Kühn I, Zobel M, Bacher S, Botta-Dukat Z, Bugmann H, Czucz B, Dauber J, Hickler T, Jarosyk V, Kenis M, Klotz S, Minchin D, Moora M, Nentwig W, Ott J, Panov VE, Reineking B, Robinet C, Semenchenko V, Solarz Solarz W, Thuiller W, Vilà M, Vohland K, Settele J (2009) Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24:686–693

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Irene Martinez-Baraldés and participants of the Polarstern PS81/ANT XXIX/3 for their fieldwork help. We also thank the crew of the R/V Polarstern. The authors would also like to thank Julian Gutt for allowing us to participate in the expedition. The manuscript improved after the revision of Marc Eleaume and two other anonymous reviewers. Rafael Martín-Ledo provided useful information on the identification of some of the ophiuroid species included in this paper. Dr. Igor Sminov is also thanked for some comments on species identification difficulties. Cruise participation of PLG and NT was supported by the Spanish National Project ECOWED (CTM2012-39350-C02-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Núria Teixidó.

Additional information

This article belongs to the special issue on “High environmental variability and steep biological gradients in the waters off the northern Antarctic Peninsula,” coordinated by Julian Gutt, Bruno David, and Enrique Isla.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 12 kb)

Supplementary material 2 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambroso, S., Böhmer, A., López-González, P. et al. Ophiuroid biodiversity patterns along the Antarctic Peninsula. Polar Biol 39, 881–895 (2016). https://doi.org/10.1007/s00300-016-1911-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-016-1911-4

Keywords

Navigation