Skip to main content
Log in

Alleviation potential of green-synthesized selenium nanoparticles for cadmium stress in Solanum lycopersicum L: modulation of secondary metabolites and physiochemical attributes

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Selenium nanoparticles reduce cadmium absorption in tomato roots, mitigating heavy metal effects. SeNPs can efficiently help to enhance growth, yield, and biomolecule markers in cadmium-stressed tomato plants.

Abstract

In the present study, the effects of selenium nanoparticles (SeNPs) were investigated on the tomato plants grown in cadmium-contaminated soil. Nanoparticles were synthesized using water extract of Nigella sativa and were characterized for their size and shape. Two application methods (foliar spray and soil drench) with nanoparticle concentrations of 0, 100, and 300 mg/L were used to observe their effects on cadmium-stressed plants. Growth, yield, biochemical, and stress parameters were studied. Results showed that SeNPs positively affected plant growth, mitigating the negative effects of cadmium stress. Shoot length (SL), root length (RL), number of branches (NB), number of leaves per plant (NL), and leaf area (LA) were significantly reduced by cadmium stress but enhanced by 45, 51, 506, 208, and 82%, respectively, by soil drench treatment of SeNPs. Similarly, SeNPs increased the fruit yield (> 100%) and fruit weight (> 100%), and decreased the days to fruit initiation in tomato plants. Pigments were also positively affected by the SeNPs, particularly in foliar treatment. Lycopene content was also enhanced by the addition of NPs (75%). Furthermore, the addition of SeNPs improved the ascorbic acid, protein, phenolic, flavonoid, and proline contents of the tomato plants under cadmium stress, whereas stress enzymes also showed enhanced activities under cadmium stress. It is concluded from the present study that the addition of selenium nanoparticles enhanced the growth and yield of Cd-stressed plants by reducing the absorption of cadmium and increasing the stress management of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data supporting this study are included within the article.

References

  • Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76. https://doi.org/10.1016/j.plantsci.2012.07.014

    Article  CAS  PubMed  Google Scholar 

  • Ahmad S, Ali H, Ur Rehman A, Khan RJZ, Ahmad W, Fatima Z, Abbas G, Irfan M, Ali H, Khan MA (2015) Measuring leaf area of winter cereals by different techniques: a comparison. Pak J Life Soc Sci 13:117–125

    Google Scholar 

  • Akram NA, Shafiq F, Ashraf M (2017) Ascorbic acid potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00613

    Article  PubMed  PubMed Central  Google Scholar 

  • Aneyo IA, Doharty FV, Adebesin OA, Hammed MO (2016) Biodegradation of pollutants in wastewater from pharmaceutical textile and local dye effluent in Lagos. Nigeria J Health Poll 6(12):34–42

    Article  Google Scholar 

  • Antoniadis V, Levizou E, Shaheen SM, Ok YS, Sebastian A, Baum C, Prasad MN, Wenzel WW, Rinklebe J (2017) Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation—a review. Earth Sci Rev 171:621–645

    Article  CAS  Google Scholar 

  • Arnon DI, Whatley F (1949) Determination of total chlorophyll and carotenoids content. Crop Sci 110:554–556

    CAS  Google Scholar 

  • Awad M, El-Desoky M, Ghallab A, Kubes J, Abdel-Mawly S, Danish S, Ratnasekera D, Sohidul Islam M, Skalicky M, Brestic M (2021) Ornamental plant efficiency for heavy metals phytoextraction from contaminated soils amended with organic materials. Molecules 26:3360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates LS, Waldern RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Bergougnoux V (2014) The history of tomato: from domestication to biopharming. Biotec Adv 32:170–189. https://doi.org/10.1016/j.biotechadv.2013.11.003

    Article  CAS  Google Scholar 

  • Burk RF, Hill KE (2015) Regulation of selenium metabolism and transport. Annu Rev Nutr 35:109–134

    Article  CAS  PubMed  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalase and pemxides. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Chiroma TM, Wbewele RO, Hymore FK (2014) Comparative assessment of heavy metal levels in soil, vegetables and urban grey water used for irrigation in Yola and Kano. Int J ENg Sci 3(2):1–9

    Google Scholar 

  • Ciccolini V, Pellegrino E, Coccina A, Fiaschi AI, Cerretani D, Sgherri C, Quartacci MF, Ercoli L (2017) Biofortification with iron and zinc improves nutritional and nutraceutical properties of common wheat flour and bread. J of Agri and Food Chem 65:5443–5452

    Article  CAS  Google Scholar 

  • Cui J, Liu T, Li Y, Li F (2018) Selenium reduces cadmium uptake into rice suspension cells by regulating the expression of lignin synthesis and cadmium-related genes. Sci Total Env 644:602–610. https://doi.org/10.1016/j.scitotenv.2018.07.002

    Article  CAS  Google Scholar 

  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940

    Article  CAS  PubMed  Google Scholar 

  • Davey MW, Stals E, Panis B, Keulemans J, Swennen RL (2005) High-throughput determination of malondialdehyde in plant tissues. Anal Biochem 347(2):201–207

    Article  CAS  PubMed  Google Scholar 

  • de Brito Mateus MP, Tavanti RFR, Tavanti TR, Santos EF, Jalal A, Dos Reis AR (2021) Selenium biofortification enhances ROS scavenge system increasing yield of coffee plants. Eco Environ Saf 209:111772

    Article  Google Scholar 

  • Dinesh B, Yadav B, Reddy RD, Padma AS, Sukumaran M (2015) Determination of ascorbic acid content in some Indian spices. Int J Curr Microbiol Appl Sci 4:864–868

    CAS  Google Scholar 

  • Du B, Luo H, He L, Zhang L, Liu Y, Mo Z, Pan S, Tian H, Duan M, Tang X (2019) Rice seed priming with sodium selenate: effects on germination, seedling growth, and biochemical attributes. Sci Repr 9:4311

    Article  Google Scholar 

  • El Rasafi T, Oukarroum A, Haddioui A, Song H, Kwon EE, Bolan N, Tack FM, Sebastian A, Prasad M, Rinklebe J (2022) Cadmium stress in plants: A critical review of the effects, mechanisms, and tolerance strategies. Critical Reviews in Environ Sci Technol 52:675–726

    Article  Google Scholar 

  • Elavarthi S, Martin B (2010) Spectrophotometric assays for antioxidant enzymes in plants. In: Plant stress tolerance: methods and protocols, 273–280.

  • Emamverdian A, Ghorbani A, Li Y, Pehlivan N, Barker J, Ding Y, Liu G, Zargar M (2023) Responsible mechanisms for the restriction of heavy metal toxicity in plants via the co-foliar spraying of nanoparticles. Agronomy 13:1748

    Article  CAS  Google Scholar 

  • Falco W, Queiroz A, Fernandes J, Botero E, Falcão E, Guimarães FEG, M’Peko J-C, Oliveira S, Colbeck I, Caires A (2015) Interaction between chlorophyll and silver nanoparticles: a close analysis of chlorophyll fluorescence quenching. J Photochem Photobiol A Chem 299:203–209. https://doi.org/10.1016/j.jphotochem.2014.12.001

    Article  CAS  Google Scholar 

  • Fardsadegh B, Jafarizadeh-Malmiri H (2019) Aloe vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of their in vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains. Green Process Synt 8:399–407

    Article  CAS  Google Scholar 

  • Fida M, Li P, Wang Y, Alam SK, Nsabimana A (2023) Water contamination and human health risks in Pakistan: a review. Exposure and Health 15:619–639

    Article  CAS  Google Scholar 

  • Filek M, Keskinen R, Hartikainen H, Szarejko I, Janiak A, Miszalski Z, Golda A (2008) The protective role of selenium in rape seedlings subjected to cadmium stress. J Plant Physiol 165:833–844. https://doi.org/10.1016/j.jplph.2007.06.006

    Article  CAS  PubMed  Google Scholar 

  • Fio JL, Fujii R, Deverel S (1991) Selenium mobility and distribution in irrigated and nonirrigated alluvial soils. Soil Sci Soc Am J 55:1313–1320. https://doi.org/10.2136/sssaj1991.03615995005500050020x

    Article  CAS  Google Scholar 

  • Forootanfar H, Adeli-Sardou M, Nikkhoo M, Mehrabani M, Amir-Heidari B, Shahverdi AR, Shakibaie M (2014) Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide. J Trace Elem Med Biol 28:75–79. https://doi.org/10.1016/j.jtemb.2013.07.005

    Article  CAS  PubMed  Google Scholar 

  • Fritea L, Laslo V, Cavalu S, Costea T, Vicas SI (2017) Green biosynthesis of selenium nanoparticles using parsley (Petroselinum crispum) leaves extract. Studia Universitatis" " Arad. Life Sci Ser 27:203–208

    CAS  Google Scholar 

  • Ghaffar N, Javad S, Farrukh MA, Shah AA, Gatasheh MK, Al-Munqedhi BM, Chaudhry O (2022) Metal nanoparticles assisted revival of Streptomycin against MDRS Staphylococcus aureus. PLoS ONE 17:e0264588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghasemian S, Masoudian N, Saeid N (2021) Selenium nanoparticles stimulate growth, physiology, and gene expression to alleviate salt stress in Melissa officinalis. Biologia 76:2879–2888

    Article  CAS  Google Scholar 

  • Gulzar ABM, Mazumder PB (2022) Helping plants to deal with heavy metal stress: the role of nanotechnology and plant growth promoting rhizobacteria in the process of phytoremediation. Environ Sci Pollut Res 29:40319–40341

    Article  CAS  Google Scholar 

  • Gunti L, Dass RS, Kalagatur NK (2019) Phytofabrication of selenium nanoparticles from Emblica officinalis fruit extract and exploring its biopotential applications: antioxidant, antimicrobial, and biocompatibility. Front Microbiol 10:931. https://doi.org/10.3389/fmicb.2019.00931

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Mao K, Cao H, Ali W, Lei D, Teng D, Chang C, Yang X, Yang Q, Niazi NK, Feng X (2021) Exogenous selenium (cadmium) inhibits the absorption and transportation of cadmium (selenium) in rice. Environ Poll 268:115829

    Article  CAS  Google Scholar 

  • Gupta M, Gupta S (2017) An overview of selenium uptake, metabolism, and toxicity in plants. Front Plant Sci 7:2074. https://doi.org/10.3389/fpls.2016.02074

    Article  PubMed  PubMed Central  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. https://doi.org/10.1016/0003-9861(68)90654-1

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot. https://doi.org/10.1155/2012/872875. (10.1021/acs.jafc.7b01176)

    Article  Google Scholar 

  • Hussain M, Saeed A, Khan A, Javid S, Fatima B (2015) Differential responses of one hundred tomato genotypes grown under cadmium stress. Gen Molecul Res 14:13162–13171. https://doi.org/10.4238/2015

    Article  Google Scholar 

  • Hussain A, Ali S, Rizwan M, Ur Rehman MZ, Qayyum MF, Wang H, Rinklebe J (2019) Responses of wheat (Triticum aestivum) plants grown in a Cd contaminated soil to the application of iron oxide nanoparticles. Ecotoxicol Environ Saf 173:156–164. https://doi.org/10.1016/j.ecoenv.2019.01.118

    Article  CAS  PubMed  Google Scholar 

  • Hussain B, Lin Q, Hamid Y, Sanaullah M, Di L, Khan MB, He Z, Yang X (2020) Foliage application of selenium and silicon nanoparticles alleviates Cd and Pb toxicity in rice (Oryza sativa L.). Sci Total Environ 712:136497. https://doi.org/10.1016/j.scitotenv.2020.136497

    Article  CAS  PubMed  Google Scholar 

  • Ikram M, Raja NI, Javed B, Z-u-R M, Hussain M, Hussain M, Ehsan M, Rafique N, Malik K, Sultana T (2020) Foliar applications of bio-fabricated selenium nanoparticles to improve the growth of wheat plants under drought stress. Green Proc Syn 9:706–714. https://doi.org/10.1515/gps-2020-0067

    Article  Google Scholar 

  • Iqbal M, Ahmed S, Rehman W, Menaa F, Ullah MA (2020) Heavy metal levels in vegetables cultivated in Pakistan soil irrigated with untreated wastewater: preliminary results. Sustain 12:8891. https://doi.org/10.3390/su12218891

    Article  CAS  Google Scholar 

  • Ismael MA, Elyamine AM, Moussa MG, Cai M, Zhao X, Hu C (2019) Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics 11:255–277. https://doi.org/10.1039/c8mt00247a

    Article  CAS  PubMed  Google Scholar 

  • Järup L, Åkesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208. https://doi.org/10.1016/j.taap.2009.04.020

    Article  CAS  PubMed  Google Scholar 

  • Jibril SA, Hassan SA, Ishak CF, MegatWahab PE (2017) Cadmium toxicity affects phytochemicals and nutrient elements composition of lettuce (Lactuca sativa L,). Adv Agric. https://doi.org/10.1155/2017/1236830

    Article  Google Scholar 

  • Jones JJB, Case VW (1990) Sampling, handling, and analyzing plant tissue samples. Soil Testing Plant anal 3:389–427

    Google Scholar 

  • Juárez-Maldonado A, Ortega-Ortíz H, Morales-Díaz AB, González-Morales S, Morelos-Moreno Á, Cabrera-De la Fuente M, Sandoval-Rangel A, Cadenas-Pliego G, Benavides-Mendoza A (2019) Nanoparticles and nanomaterials as plant biostimulants. Int J Mol Sci 20:162. https://doi.org/10.3390/ijms20010162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keyster M, Niekerk LA, Basson G, Carelse M, Bakare O, Ludidi N, Klein A, Mekuto L, Gokul A (2020) Decoding heavy metal stress signalling in plants: towards improved food security and safety. Plants 9(12):1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna K, Jamwal VL, Sharma A, Gandhi SG, Ohri P, Bhardwaj R, Al-Huqail AA, Siddiqui MH, Ali HM, Ahmad P (2019) Supplementation with plant growth promoting rhizobacteria (PGPR) alleviates cadmium toxicity in Solanum lycopersicum by modulating the expression of secondary metabolites. Chemosphere 230:628–639. https://doi.org/10.1016/j.chemosphere.2019.05.072

    Article  CAS  PubMed  Google Scholar 

  • Lattanzio V, Cardinali A, Ruta C, Fortunato IM, Lattanzio VM, Linsalata V, Cicco N (2009) Relationship of secondary metabolism to growth in oregano (Origanum vulgare L.) shoot cultures under nutritional stress. J Exp Bot 65:54–62. https://doi.org/10.1016/j.envexpbot.2008.09.002

    Article  CAS  Google Scholar 

  • Li C, Zhou K, Qin W, Tian C, Qi M, Yan X, Han W (2019) A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil Sediment Contamina Int J 28:380–394

    Article  Google Scholar 

  • Mathesius U (2018) Flavonoid functions in plants and their interactions with other organisms. Plants 7:30. https://doi.org/10.3390/plants7020030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazhar MW, Ishtiaq M, Maqbool M, Akram R (2022) Seed priming with Calcium oxide nanoparticles improves germination, biomass, and antioxidant defence and yield traits of canola plants under drought stress. S Afr J Sci 151:889–899. https://doi.org/10.1016/j.sajb.2022.11.017

    Article  CAS  Google Scholar 

  • Mollania N, Tayebee R, Narenji-Sani F (2016) An environmentally benign method for the biosynthesis of stable selenium nanoparticles. Res Chem Intermed 42:4253–4271

    Article  CAS  Google Scholar 

  • Morales-Espinoza MC, Cadenas-Pliego G, Pérez-Alvarez M, Hernández-Fuentes AD, Cabrera de la Fuente M, Benavides-Mendoza A, Valdés-Reyna J, Juárez-Maldonado A (2019) Se nanoparticles induce changes in the growth, antioxidant responses, and fruit quality of tomato developed under NaCl stress. Molecules 24:3030. https://doi.org/10.3390/molecules24173030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA (2012) Closing yield gaps through nutrient and water management. Nature 490:254–257

    Article  CAS  PubMed  Google Scholar 

  • Murugesan G, Saha R, Sunmathi D, Nagaraj K, Kumar SR, Subramani K (2022) Leucas aspera mediated SeO nanoparticles synthesis for exploiting its pharmaceutical efficacy. Plant Nano Biol 2:100013. https://doi.org/10.1016/j.plana.2022.100013

    Article  Google Scholar 

  • Nawaz F, Ashraf M, Ahmad R, Waraich E, Shabbir R, Bukhari M (2015) Supplemental selenium improves wheat grain yield and quality through alterations in biochemical processes under normal and water deficit conditions. Food Chem 175:350–357. https://doi.org/10.1016/j.foodchem.2014.11.147

    Article  CAS  PubMed  Google Scholar 

  • Nazar R, Iqbal N, Masood A, Khan MIR, Syeed S, Khan NA (2012) Cadmium toxicity in plants and role of mineral nutrients in its alleviation

  • Neetu T (2013) Determination of chlorinated pesticide in vegetables, cereals and pulses by gas chromatography in east national capital region, Delhi, India. Res J Agri Forestry Sci 1:27–28

    Google Scholar 

  • Neysanian M, Iranbakhsh A, Ahmadvand R, OraghiArdebili Z, Ebadi M (2020) Comparative efficacy of selenate and selenium nanoparticles for improving growth, productivity, fruit quality, and postharvest longevity through modifying nutrition, metabolism, and gene expression in tomato; potential benefits and risk assessment. PLoS ONE 15(12):e0244207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozyigit II, Karahan F, Yalcin IE, Hocaoglu-Ozyigit A, Ilcim A (2022) Heavy metals and trace elements detected in the leaves of medicinal plants collected in the southeast part of Turkey. Arab J Geosci 15:1–21

    Article  Google Scholar 

  • Paciolla C, Fortunato S, Dipierro N, Paradiso A, De Leonardis S, Mastropasqua L, De Pinto MC (2019) Vitamin C in plants: from functions to biofortification. Antioxidants 8:519. https://doi.org/10.3390/antiox8110519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padayatty SJ, Katz A, Wang Y, Eck P, Kwon O, Lee J-H, Chen S, Corpe C, Dutta A, Dutta SK (2003) Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr 22:18–35. https://doi.org/10.1080/07315724.2003.10719272

    Article  CAS  PubMed  Google Scholar 

  • Panda SK (2012) Assay guided comparison for enzymatic and non-enzymatic antioxidant activities with special reference to medicinal plants. In: Mohammed A (ed) Antioxidant enzyme, 1st edn. InTech, Croatia, pp 382–400

    Google Scholar 

  • Pezzarossa B, Remorini D, Gentile ML, Massai R (2012) Effects of foliar and fruit addition of sodium selenate on selenium accumulation and fruit quality. J Sci Food Agric 92:781–786. https://doi.org/10.1002/jsfa.4644

    Article  CAS  PubMed  Google Scholar 

  • Qi W-Y, Li Q, Chen H, Liu J, Xing S-F, Xu M, Yan Z, Song C, Wang S-G (2021) Selenium nanoparticles ameliorate Brassica napus L. cadmium toxicity by inhibiting the respiratory burst and scavenging reactive oxygen species. J Hazard Mater 417:125900. https://doi.org/10.1016/j.jhazmat.2021.125900

    Article  CAS  PubMed  Google Scholar 

  • Rady MM, Hemida KA (2015) Modulation of cadmium toxicity and enhancing cadmium-tolerance in wheat seedlings by exogenous application of polyamines. Ecotoxicol Environ Saf 119:178–185. https://doi.org/10.1016/j.ecoenv.2015.05.008

    Article  CAS  PubMed  Google Scholar 

  • Ranganna S (1977) Manual of analysis of fruit and vegetable products. McGraw Hill, New Delhi

    Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181. https://doi.org/10.1016/j.plantsci.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  • Rashid A, Schutte BJ, Ulery A, Deyholos MK, Sanogo S, Lehnhoff EA, Beck L (2023) Heavy metal contamination in agricultural soil: environmental pollutants affecting crop health. Agronomy 13:1521. https://doi.org/10.3390/agronomy13061521

    Article  CAS  Google Scholar 

  • Rebey IB, Jabri-Karoui I, Hamrouni-Sellami I, Bourgou S, Limam F, Marzouk B (2012) Effect of drought on the biochemical composition and antioxidant activities of cumin (Cuminum cyminum L.) seeds. Ind Crops Prod 36:238–245. https://doi.org/10.1016/j.indcrop.2011.09.013

    Article  CAS  Google Scholar 

  • Salama HM (2012) Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J Biotechnol 3:190–197

    Google Scholar 

  • Sardar R, Ahmed S, Shah AA, Yasin NA (2022) Selenium nanoparticles reduced cadmium uptake, regulated nutritional homeostasis and antioxidative system in Coriandrum sativum grown in cadmium toxic conditions. Chemosphere 287:132332. https://doi.org/10.1016/j.chemosphere.2021.132332

    Article  CAS  PubMed  Google Scholar 

  • Schiavon M, Santoro V (2022) Manipulation of selenium metabolism in plants for tolerance and accumulation. In: Hossain MA, Ahammed GJ, Kolbert Z, El-Ramady H, Islam T, Schiavon M (eds) Selenium and nano-selenium in environmental stress management and crop quality improvement. Sustainable plant nutrition in a changing world. Springer, Cham. https://doi.org/10.1007/978-3-031-07063-1_16

    Chapter  Google Scholar 

  • Shah AA, Ahmed S, Ali A, Yasin NA (2020) 2-Hydroxymelatonin mitigates cadmium stress in cucumis sativus seedlings: modulation of antioxidant enzymes and polyamines. Chemosphere 243:125308. https://doi.org/10.1016/j.chemosphere.2019.125308

    Article  CAS  PubMed  Google Scholar 

  • Shekari F, Abbasi A, Mustafavi SH (2017) Effect of silicon and selenium on enzymatic changes and productivity of dill in saline condition. J Saudi Soc Agric Sci 16:367–374

    Google Scholar 

  • Srivastava N, Mukhopadhyay M (2015) Green synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial property. Bioprocess Biosyst Eng 38:1723–1730

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Wang X, Yang N, Zhou H, Gao Y, Jia Y, Wang X (2022) Effect of exogenous selenium on mineral nutrition and antioxidative capacity in cucumber (Cucumis sativus L.) seedlings under cadmium stress. Plant Soil Environ 68:580–590. https://doi.org/10.17221/294/2022-PSE

    Article  CAS  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97. https://doi.org/10.1016/j.tplants.2009.11.009

    Article  CAS  PubMed  Google Scholar 

  • Usman M, Farooq M, Wakeel A, Nawaz A, Cheema SA, Rehman H, Ashraf I, Sanaullah M (2020) Nanotechnology in agriculture: Current status, challenges and future opportunities. Sci Total Environ 721:137778. https://doi.org/10.1016/j.scitotenv.2020.137778

    Article  CAS  PubMed  Google Scholar 

  • Verslues PE, Sharma S (2010) Proline metabolism and its implications for plant-environment interaction. Am Soci Plant Biol 8:140

    Google Scholar 

  • Wu Z, Xu S, Shi H, Zhao P, Liu X, Li F, Deng T, Du R, Wang X, Wang F (2018) Comparison of foliar silicon and selenium on cadmium absorption, compartmentation, translocation and the antioxidant system in Chinese flowering cabbage. Ecotoxicol Environ Saf 166:157–164. https://doi.org/10.1016/j.ecoenv.2018.09.085

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Su L, He Z, Zhang J, Tang Y (2021) Selenium inhibits cadmium absorption and improves yield and quality of cherry tomato (Lycopersicon esculentum) under cadmium stress. J Soil Sci Plant Nutr 21:1125–1133

    Article  CAS  Google Scholar 

  • Xu H, Yan J, Qin Y, Xu J, Shohag M, Wei Y, Gu M (2020) Effect of different forms of selenium on the physiological response and the cadmium uptake by rice under cadmium stress. Int Int J Environ Res Public Health 17:6991. https://doi.org/10.3390/ijerph17196991

    Article  CAS  PubMed  Google Scholar 

  • Yang DL, Yao J, Mei CS, Tong XH, Zeng LJ, Li Q, Xiao LT, Sun TP, Li J, Deng XW, Lee CM (2012) Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proceed Nat Acad Sci 109(19):E1192–E1200

    Article  CAS  Google Scholar 

  • Zahedi H, Rad AHS, Moghadam HRT (2011) Effects of zeolite and selenium applications on some agronomic traits of three canola cultivars under drought stress. Pesqui Agropecu Trop 41:179–185. https://doi.org/10.5216/pat.v41i2.9554

    Article  Google Scholar 

  • Zare B, Babaie S, Setayesh N, Shahverdi AR (2013) Isolation and characterization of a fungus for extracellular synthesis of small selenium nanoparticles. Nanomed J 1:13–19

    Google Scholar 

  • Zembala M, Filek M, Walas S, Mrowiec H, Kornaś A, Miszalski Z, Hartikainen H (2010) Effect of selenium on macro-and microelement distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress. Plant Soil 329:457–468

    Article  CAS  Google Scholar 

  • Zhang S, Gan Y, Xu B (2016) Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Front Plant Sci 7:1405. https://doi.org/10.3389/fpls.2016.01405

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Guan J, Liang Q, Zhang X, Hu H, Zhang J (2021) Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings. Sci Rep 11:9913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Zhang C, Du B, Cui H, Fan X, Zhou D, Zhou J (2021) Soil and foliar applications of silicon and selenium effects on cadmium accumulation and plant growth by modulation of antioxidant system and Cd translocation: comparison of soft vs. durum wheat varieties. J Hazard Mater 402:123546. https://doi.org/10.1016/j.jhazmat.2020.123546

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Liang Y, Gao D, An X, Kong F (2017) Spraying foliar selenium fertilizer on quality of table grape (Vitis vinifera L.) from different source varieties. Sci Horticul 218:87–94. https://doi.org/10.1016/j.scienta.2017.02.025

    Article  CAS  Google Scholar 

  • Zoidis E, Seremelis I, Kontopoulos N, Danezis GP (2018) Selenium-dependent antioxidant enzymes: Actions and properties of selenoproteins. Antiox 7(5):66

    Article  Google Scholar 

  • Zulfiqar U, Jiang W, Xiukang W, Hussain S, Ahmad M, Maqsood MF, Ali N, Ishfaq M, Kaleem M, Haider FU (2022) Cadmium phytotoxicity, tolerance, and advanced remediation approaches in agricultural soils; a comprehensive review. Front Plant Sci 13:773815

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research and Innovation, “Ministry of Education” in Saudi Arabia for funding this research (IFKSUOR3-552-3).

Funding

This study was funded by the Deputyship for Research and Innovation, “Ministry of Education” Saudi Arabia (IFKSUOR3-552-3).

Author information

Authors and Affiliations

Authors

Contributions

AA, carried out the research work; SJ, conceptualized and supervised the research work; SI, interpreted the results and wrote the draft; KS, data analysis; MKG, initial draft formation and statistical analysis; TJ, data interpretation and reviewing the draft.

Corresponding author

Correspondence to Sumera Javad.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Neal Stewart.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, A., Javad, S., Iqbal, S. et al. Alleviation potential of green-synthesized selenium nanoparticles for cadmium stress in Solanum lycopersicum L: modulation of secondary metabolites and physiochemical attributes. Plant Cell Rep 43, 113 (2024). https://doi.org/10.1007/s00299-024-03197-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00299-024-03197-9

Keywords

Navigation