Skip to main content
Log in

Discovery of DNA polymorphisms via genome-resequencing and development of molecular markers between two barley cultivars

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Genome resequencing uncovers genome-wide DNA polymorphisms that are useful for the development of high-density InDel markers between two barley cultivars.

Abstract

Discovering genomic variations and developing genetic markers are crucial for genetics studies and molecular breeding in cereal crops. Although InDels (insertions and deletions) have become popular because of their abundance and ease of detection, discovery of genome-wide DNA polymorphisms and development of InDel markers in barley have lagged behind other cereal crops such as rice, maize and wheat. In this study, we re-sequenced two barley cultivars, Golden Promise (GP, a classic British spring barley variety) and Hua30 (a Chinese spring barley variety), and mapped clean reads to the reference Morex genome, and identified in total 13,933,145 single nucleotide polymorphisms (SNPs) and 1,240,456 InDels for GP with Morex, 11,297,100 SNPs and 781,687 InDels for Hua30 with Morex, and 13,742,399 SNPs and 1,191,597 InDels for GP with Hua30. We further characterized distinct types, chromosomal distribution patterns, genome location, functional effect, and other features of these DNA polymorphisms. Additionally, we revealed the functional relevance of these identified SNPs/InDels regarding different flowering times between Hua30 and GP within 17 flowering time genes. Furthermore, we developed a series of InDel markers and validated them experimentally in 43 barley core accessions, respectively. Finally, we rebuilt population structure and phylogenetic tree of these 43 barley core accessions. Collectively, all of these genetic resources will facilitate not only the basic research but also applied research in barley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The genome-resequencing dataset generated is available in the NCBI database under BioProject ID PRJNA825118. The other data associated with this study is available from the corresponding author on reasonable request.

References

  • Abed A, Badea A, Beattie A, Khanal R, Tucker J, Belzile F (2022) A high-resolution consensus linkage map for barley based on GBS-derived genotypes. Genome 65:83–94

    Article  CAS  PubMed  Google Scholar 

  • Andrés F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13:627–639

    Article  PubMed  Google Scholar 

  • Boden SA, Weiss D, Ross JJ, Davies NW, Trevaskis B, Chandler PM, Swain SM (2014) EARLY FLOWERING3 regulates flowering in spring barley by mediating gibberellin production and FLOWERING LOCUS T expression. Plant Cell 26:1557–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Campoli C, von Korff M (2014) Genetic control of reproductive development in temperate cereals. In: Fornara F (ed) Adv Bot Res. Academic Press, pp 131–158

    Google Scholar 

  • Campoli C, Drosse B, Searle I, Coupland G, von Korff M (2012) Functional characterisation of HvCO1, the barley (Hordeum vulgare) flowering time ortholog of CONSTANS. Plant J 69:868–880

    Article  CAS  PubMed  Google Scholar 

  • Chai C, Shankar R, Jain M, Subudhi PK (2018) Genome-wide discovery of DNA polymorphisms by whole genome sequencing differentiates weedy and cultivated rice. Sci Rep 8:14218

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Chen Y, Shi C, Huang Z, Zhang Y, Li S, Li Y, Ye J, Yu C, Li Z, Zhang X, Wang J, Yang H, Fang L, Chen Q (2017) SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience 7:1

    PubMed Central  Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an Integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202

    Article  CAS  PubMed  Google Scholar 

  • Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly (austin) 6:80–92

    Article  CAS  PubMed  Google Scholar 

  • Dai F, Wang X, Zhang X-Q, Chen Z, Nevo E, Jin G, Wu D, Li C, Zhang G (2018) Assembly and analysis of a qingke reference genome demonstrate its close genetic relation to modern cultivated barley. Plant Biotechnol J 16:760–770

    Article  CAS  PubMed  Google Scholar 

  • Das S, Upadhyaya HD, Srivastava R, Bajaj D, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK (2015) Genome-wide insertion-deletion (InDel) marker discovery and genotyping for genomics-assisted breeding applications in chickpea. DNA Res 22:377–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dracatos PM, Park RF, Singh D (2020) Validating molecular markers for barley leaf rust resistance genes Rph20 and Rph24. Plant Dis 105:743–747

    Article  Google Scholar 

  • Fang J, Wood AM, Chen Y, Yue J, Ming R (2020) Genomic variation between PRSV resistant transgenic SunUp and its progenitor cultivar Sunset. BMC Genomics 21:398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO STAT (2019) World food situation. Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#home

  • Fedoroff NV (2010) The past, present and future of crop genetic modification. New Biotechnol 27:461–465

    Article  CAS  Google Scholar 

  • Fernández-Calleja M, Casas AM, Igartua E (2021) Major flowering time genes of barley: allelic diversity, effects, and comparison with wheat. Theor Appl Genet 134:1867–1897

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao R, Guo G, Fang C, Huang S, Chen J, Lu R, Huang J, Fan X, Liu C (2018) Rapid generation of barley mutant lines with high nitrogen uptake efficiency by microspore mutagenesis and field screening. Front Plant Sci 9:450

    Article  PubMed  PubMed Central  Google Scholar 

  • Garrido-Cardenas JA, Mesa-Valle C, Manzano-Agugliaro F (2018) Trends in plant research using molecular markers. Planta 247:543–557

    Article  CAS  PubMed  Google Scholar 

  • Hearnden PR, Eckermann PJ, McMichael GL, Hayden MJ, Eglinton JK, Chalmers KJ (2007) A genetic map of 1,000 SSR and DArT markers in a wide barley cross. Theor Appl Genet 115:383

    Article  CAS  PubMed  Google Scholar 

  • Hemming MN, Fieg S, James Peacock W, Dennis ES, Trevaskis B (2009) Regions associated with repression of the barley (Hordeum vulgare) VERNALIZATION1 gene are not required for cold induction. Mol Genet Genomics 282:107–117

    Article  CAS  PubMed  Google Scholar 

  • Higgins JA, Bailey PC, Laurie DA (2010) Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses. PLoS ONE 5:e10065

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu B, Wang W, Ou S, Tang J, Li H, Che R, Zhang Z, Chai X, Wang H, Wang Y, Liang C, Liu L, Piao Z, Deng Q, Deng K, Xu C, Liang Y, Zhang L, Li L, Chu C (2015) Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet 47:834–838

    Article  CAS  PubMed  Google Scholar 

  • Islam MS, Coronejo S, Subudhi PK (2020) Whole-genome sequencing reveals uniqueness of black-hulled and straw-hulled weedy rice genomes. Theor Appl Genet 133:2461–2475

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Moharana KC, Shankar R, Kumari R, Garg R (2014) Genomewide discovery of DNA polymorphisms in rice cultivars with contrasting drought and salinity stress response and their functional relevance. Plant Biotechnol J 12:253–264

    Article  CAS  PubMed  Google Scholar 

  • Jayakodi M, Padmarasu S, Haberer G, Bonthala VS, Gundlach H, Monat C, Lux T, Kamal N, Lang D, Himmelbach A (2020) The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 588:284–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia Q, Tan C, Wang J, Zhang X-Q, Zhu J, Luo H, Yang J, Westcott S, Broughton S, Moody D, Li C (2016) Marker development using SLAF-seq and whole-genome shotgun strategy to fine-map the semi-dwarf gene ari-e in barley. BMC Genomics 17:911

    Article  PubMed  PubMed Central  Google Scholar 

  • Knüpffer H, van Hintum T (2003) Summarised diversity – the barley core collection. In: von Bothmer R, van Hintum T, Knüpffer H, Sato K (eds) Dev Plant Genet Breed. Elsevier, pp 259–267

    Google Scholar 

  • Li H, Durbin R (2010) Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics 26:589–595

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Xu Y (2022) Bulk segregation analysis in the NGS era: a review of its teenage years. Plant J 109:1355–1374

    Article  CAS  PubMed  Google Scholar 

  • Li M, Geng L, Xie S, Wu D, Ye L, Zhang G (2021) Genome-wide association study on total starch, amylose and amylopectin in barley grain reveals novel putative alleles. Int J Mol Sci 22:553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Bayer M, Druka A, Russell JR, Hackett CA, Poland J, Ramsay L, Hedley PE, Waugh R (2014) An evaluation of genotyping by sequencing (GBS) to map the Breviaristatum-e (ari-e) locus in cultivated barley. BMC Genomics 15:104

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu T-J, Li Y-P, Zhou J-J, Hu C-G, Zhang J-Z (2018) Genome-wide genetic variation and comparison of fruit-associated traits between kumquat (Citrus japonica) and Clementine mandarin (Citrus clementina). Plant Mol Biol 96:493–507

    Article  CAS  PubMed  Google Scholar 

  • Liu S, An Y, Tong W, Qin X, Samarina L, Guo R, Xia X, Wei C (2019) Characterization of genome-wide genetic variations between two varieties of tea plant (Camellia sinensis) and development of InDel markers for genetic research. BMC Genomics 20:935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lü Y, Cui X, Li R, Huang P, Zong J, Yao D, Li G, Zhang D, Yuan Z (2015) Development of genome-wide insertion/deletion markers in rice based on graphic pipeline platform. J Integr Plant Biol 57:980–991

    Article  PubMed  Google Scholar 

  • Mascher M, Richmond TA, Gerhardt DJ, Himmelbach A, Clissold L, Sampath D, Ayling S, Steuernagel B, Pfeifer M, D’Ascenzo M, Akhunov ED, Hedley PE, Gonzales AM, Morrell PL, Kilian B, Blattner FR, Scholz U, Mayer KFX, Flavell AJ, Muehlbauer GJ, Waugh R, Jeddeloh JA, Stein N (2013) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J 76:494–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433

    Article  CAS  PubMed  Google Scholar 

  • Mayer KFX, Waugh R, Langridge P, Close TJ, Wise RP, Graner A, Matsumoto T, Sato K, Schulman A, Muehlbauer GJ (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    Article  CAS  PubMed  Google Scholar 

  • McCouch S, Baute GJ, Bradeen J, Bramel P, Bretting PK, Buckler E, Burke JM, Charest D, Cloutier S, Cole G (2013) Feeding the future. Nature 499:23–24

    Article  CAS  PubMed  Google Scholar 

  • McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulat VJ, Zeller G, Clark RM, Hoen DR, Bureau TE, Stokowski R, Ballinger DG, Frazer KA, Cox DR, Padhukasahasram B, Bustamante CD, Weigel D, Mackill DJ, Bruskiewich RM, Rätsch G, Buell CR, Leung H, Leach JE (2009) Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci USA 106:12273–12278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monat C, Padmarasu S, Lux T, Wicker T, Gundlach H, Himmelbach A, Ens J, Li C, Muehlbauer GJ, Schulman AH, Waugh R, Braumann I, Pozniak C, Scholz U, Mayer KFX, Spannagl M, Stein N, Mascher M (2019) TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol 20:284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulki MA, von Korff M (2016) CONSTANS controls floral repression by up-regulating VERNALIZATION2 (VRN-H2) in barley. Plant Physiol 170:325–337

    Article  CAS  PubMed  Google Scholar 

  • Nguyen KL, Grondin A, Courtois B, Gantet P (2019) Next-generation sequencing accelerates crop gene discovery. Trends Plant Sci 24:263–274

    Article  CAS  PubMed  Google Scholar 

  • Păcurar DI, Păcurar ML, Street N, Bussell JD, Pop TI, Gutierrez L, Bellini C (2012) A collection of INDEL markers for map-based cloning in seven Arabidopsis accessions. J Exp Bot 63:2491–2501

    Article  PubMed  PubMed Central  Google Scholar 

  • Pieper R, Tomé F, Pankin A, von Korff M (2020) FLOWERING LOCUS T4 delays flowering and decreases floret fertility in barley. J Exp Bot 72:107–121

    Article  PubMed Central  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pourkheirandish M, Hensel G, Kilian B, Senthil N, Chen G, Sameri M, Azhaguvel P, Sakuma S, Dhanagond S, Sharma R, Mascher M, Himmelbach A, Gottwald S, Nair Sudha K, Tagiri A, Yukuhiro F, Nagamura Y, Kanamori H, Matsumoto T, Willcox G, Middleton Christopher P, Wicker T, Walther A, Waugh R, Fincher Geoffrey B, Stein N, Kumlehn J, Sato K, Komatsuda T (2015) Evolution of the grain dispersal system in barley. Cell 162:527–539

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishna G, Kaur P, Nigam D, Chaduvula PK, Yadav S, Talukdar A, Singh NK, Gaikwad K (2018) Genome-wide identification and characterization of InDels and SNPs in glycine max and glycine soja for contrasting seed permeability traits. BMC Plant Biol 18:141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rimbert H, Darrier B, Navarro J, Kitt J, Choulet F, Leveugle M, Duarte J, Rivière N, Eversole K (2018) High throughput SNP discovery and genotyping in hexaploid wheat. PLoS ONE 13:e0186329

    Article  PubMed  PubMed Central  Google Scholar 

  • Rollins JA, Drosse B, Mulki MA, Grando S, Baum M, Singh M, Ceccarelli S, von Korff M (2013) Variation at the vernalisation genes Vrn-H1 and Vrn-H2 determines growth and yield stability in barley (Hordeum vulgare) grown under dryland conditions in Syria. Theor Appl Genet 126:2803–2824

    Article  CAS  PubMed  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) A mutant gibberellin-synthesis gene in rice. Nature 416:701–702

    Article  CAS  PubMed  Google Scholar 

  • Schnurbusch T (2019) Wheat and barley biology: towards new frontiers. J Integr Plant Biol 61:198–203

    Article  PubMed  Google Scholar 

  • Schreiber M, Mascher M, Wright J, Padmarasu S, Himmelbach A, Heavens D, Milne L, Clavijo BJ, Stein N, Waugh R (2020) A genome assembly of the barley ‘Transformation Reference’ cultivar golden promise. G3 (Bethesda). 10:1823–1827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw LM, Lyu B, Turner R, Li C, Chen F, Han X, Fu D, Dubcovsky J (2018) FLOWERING LOCUS T2 regulates spike development and fertility in temperate cereals. J Exp Bot 70:193–204

    Article  PubMed Central  Google Scholar 

  • Shen C, Jin X, Zhu D, Lin Z (2017) Uncovering SNP and indel variations of tetraploid cottons by SLAF-seq. BMC Genomics 18:247

    Article  PubMed  PubMed Central  Google Scholar 

  • Subbaiyan GK, Waters DLE, Katiyar SK, Sadananda AR, Vaddadi S, Henry RJ (2012) Genome-wide DNA polymorphisms in elite indica rice inbreds discovered by whole-genome sequencing. Plant Biotechnol J 10:623–634

    Article  CAS  PubMed  Google Scholar 

  • Takahagi K, Uehara-Yamaguchi Y, Yoshida T, Sakurai T, Shinozaki K, Mochida K, Saisho D (2016) Analysis of single nucleotide polymorphisms based on RNA sequencing data of diverse bio-geographical accessions in barley. Sci Rep 6:33199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka T, Ishikawa G, Ogiso-Tanaka E, Yanagisawa T, Sato K (2019) Development of genome-wide SNP markers for barley via reference- based RNA-Seq analysis. Front Plant Sci 10:577

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang J, Chu C (2017) MicroRNAs in crop improvement: fine-tuners for complex traits. Nat Plants 3:17077

    Article  PubMed  Google Scholar 

  • Turner AS, Faure S, Zhang Y, Laurie DA (2013) The effect of day-neutral mutations in barley and wheat on the interaction between photoperiod and vernalization. Theor Appl Genet 126:2267–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unterseer S, Bauer E, Haberer G, Seidel M, Knaak C, Ouzunova M, Meitinger T, Strom TM, Fries R, Pausch H, Bertani C, Davassi A, Mayer KFX, Schön C-C (2014) A powerful tool for genome analysis in maize: development and evaluation of the high density 600 k SNP genotyping array. BMC Genomics 15:823

    Article  PubMed  PubMed Central  Google Scholar 

  • Vishwakarma MK, Kale SM, Sriswathi M, Naresh T, Shasidhar Y, Garg V, Pandey MK, Varshney RK (2017) Genome-wide discovery and deployment of insertions and deletions markers provided greater insights on species, genomes, and sections relationships in the genus Arachis. Front Plant Sci 8:2064

    Article  PubMed  PubMed Central  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang W, He J, Chen S, Peng P, Zhong W, Wang X, Zhang T, Li Y (2020) Construction of a high-density genetic map and fine mapping of a candidate gene locus for a novel branched-spike mutant in barley. PLoS ONE 15:e0227617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendler N, Mascher M, Nöh C, Himmelbach A, Scholz U, Ruge-Wehling B, Stein N (2014) Unlocking the secondary gene-pool of barley with next-generation sequencing. Plant Biotechnol J 12:1122–1131

    Article  CAS  PubMed  Google Scholar 

  • Xanthopoulou A, Manioudaki M, Bazakos C, Kissoudis C, Farsakoglou A-M, Karagiannis E, Michailidis M, Polychroniadou C, Zambounis A, Kazantzis K, Tsaftaris A, Madesis P, Aravanopoulos F, Molassiotis A, Ganopoulos I (2020) Whole genome re-sequencing of sweet cherry (Prunus avium L.) yields insights into genomic diversity of a fruit species. Hortic Res 7:60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Wang Y, Shen H, Yang W (2014) In silico identification and experimental validation of insertion–deletion polymorphisms in tomato genome. DNA Res 21:429–438

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng X, Guo Y, Xu Q, Mascher M, Guo G, Li S, Mao L, Liu Q, Xia Z, Zhou J, Yuan H, Tai S, Wang Y, Wei Z, Song L, Zha S, Li S, Tang Y, Bai L, Zhuang Z, He W, Zhao S, Fang X, Gao Q, Yin Y, Wang J, Yang H, Zhang J, Henry RJ, Stein N, Tashi N (2018) Origin and evolution of qingke barley in Tibet. Nat Commun 9:5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Cal AJ, Borevitz JO (2011) Genetic architecture of regulatory variation in Arabidopsis thaliana. Genome Res 21:725–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Gu M, Liu Y, Lv Y, Zhou L, Lu H, Liang S, Bao H, Zhao H (2017) Development of novel InDel markers and genetic diversity in Chenopodium quinoa through whole-genome re-sequencing. BMC Genomics 18:685

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Tan L, Sun H, Zhao X, Liu F, Cai H, Fu Y, Sun X, Gu P, Zhu Z, Sun C (2019) Natural variations at TIG1 encoding a TCP transcription factor contribute to plant architecture domestication in rice. Mol Plant 12:1075–1089

    Article  CAS  PubMed  Google Scholar 

  • Zheng L-Y, Guo X-S, He B, Sun L-J, Peng Y, Dong S-S, Liu T-F, Jiang S, Ramachandran S, Liu C-M, Jing H-C (2011) Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biol 12:R114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou G, Zhang Q, Tan C, Zhang X-q, Li C (2015a) Development of genome-wide InDel markers and their integration with SSR, DArT and SNP markers in single barley map. BMC Genomics 16:804

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou G, Zhang Q, Zhang X-q, Tan C, Li C (2015b) Construction of high-density genetic map in barley through restriction-site associated DNA sequencing. PLoS ONE 10:e0133161

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Liu S, Liu Y, Liu Y, You J, Deng M, Ma J, Chen G, Wei Y, Liu C, Zheng Y (2016) Mapping and validation of major quantitative trait loci for kernel length in wild barley (Hordeum vulgare ssp spontaneum). BMC Genet 17:130

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Ting Luo and Ms. Mingjiao Chen for their assistance with barley cultivation.

Funding

This research was funded by the National Natural Science Foundation of China (31970803 and 32130006), China-Germany Mobility Program (M-0141), the Innovative Research Team, Ministry of Education, and 111 Project (B14016), the Australian Research Council Discovery Project (grant no. DP210100956.).

Author information

Authors and Affiliations

Authors

Contributions

DBZ and WWC conceived and designed the project. YYZ drafted the manuscript. JS performed bioinformatic analysis. YYZ, CQS, VTT and QS performed the experiments. LZY provided materials for 40 barley varieties. JXS, WWC and DBZ revised the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Dabing Zhang or Weiwei Chen.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Additional information

Communicated by Zheng-Yi Xu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 42 KB)

Supplementary file2 (DOCX 3134 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Shi, J., Shen, C. et al. Discovery of DNA polymorphisms via genome-resequencing and development of molecular markers between two barley cultivars. Plant Cell Rep 41, 2279–2292 (2022). https://doi.org/10.1007/s00299-022-02920-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-022-02920-8

Keywords

Navigation