Skip to main content
Log in

SWI2/SNF2 chromatin remodeling ATPases SPLAYED and BRAHMA control embryo development in rice

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Chromatin remodeling ATPases OsSYD and OsBRM are involved in shoot establishment, and both affect OSH gene transcription. OsSYD protein interacts with RFL, but OsBRM does not.

Abstract

In plants, SPLAYED (SYD) and BRAHMA (BRM) encode chromatin remodeling ATPases that use the energy derived from ATP hydrolysis to restructure nucleosomes and render certain genomic regions available to transcription factors. However, the function of SYD and BRM on rice growth and development is unknown. Here, we constructed ossyd and osbrm mutants using CRISPR/Cas9 technology and analyzed the effects of mutations on rice embryo development. We discovered that the ossyd and osbrm mutants exhibited severe defects during embryonic development, whereas endosperm development was normal. These results indicated that the development of the embryo and endosperm is independent of each other. Consequently, the ossyd- and osbrm-null mutants did not germinate due to the abnormal embryos. Furthermore, we observed the embryos of ossyd- and osbrm-null mutants, and they indeed had distinct differentiation defects in shoot establishment, acquired during embryogenesis. To verify the function of OsSYD and OsBRM in embryogenesis, we measured the transcript levels of marker genes at different stages. Compared with wild type, the expression levels of multiple OSH genes were significantly reduced in the mutants, which was consistent with the defective shoot establishment phenotypes. The interaction between SYD and RICE FLORICAULA/LFY (RFL) was revealed using a yeast two-hybrid screening system, suggesting that the interaction between the LFY homolog and chromatin remodeling ATPases is ubiquitous in plants. Collectively, our findings provide the basis for elucidating the function of OsSYD and OsBRM during embryo development in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bezhani S, Winter C, Hershman S, Wagner JD, Kennedy JF, Kwon CS, Pfluger J, Su Y, Wagner D (2007) Unique, shared, and redundant roles for the Arabidopsis SWI/SNF chromatin remodeling ATPases BRAHMA and SPLAYED. Plant Cell 19:403–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304

    Article  CAS  PubMed  Google Scholar 

  • Dellaporta S (1994) Plant DNA miniprep and microprep: versions 2.1–2.3. Springer, pp 522–525

    Google Scholar 

  • Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldmann KA, Benfey PN (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86:423–433

    Article  PubMed  Google Scholar 

  • Dresselhaus T (2006) Cell-cell communication during double fertilization. Curr Opin Plant Biol 9:41–47

    Article  CAS  PubMed  Google Scholar 

  • Flaus A, Martin DM, Barton GJ, Owen-Hughes T (2006) Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res 34:2887–2905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han SK, Wu MF, Cui S, Wagner D (2015) Roles and activities of chromatin remodeling ATPases in plants. Plant J 83:62–77

    Article  CAS  PubMed  Google Scholar 

  • Hurtado L, Farrona S, Reyes JC (2006) The putative SWI/SNF complex subunit BRAHMA activates flower homeotic genes in Arabidopsis thaliana. Plant Mol Biol 62:291–304

    Article  CAS  PubMed  Google Scholar 

  • Ikeda-Kawakatsu K, Maekawa M, Izawa T, Itoh J, Nagato Y (2012) ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1. Plant J 69:168–180

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Sentoku N, Nishimura A, Hong SK, Sato Y, Matsuoka M (2002) Position dependent expression of GL2-type homeobox gene, Roc1: significance for protoderm differentiation and radial pattern formation in early rice embryogenesis. Plant J 29:497–507

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Sentoku N, Nishimura A, Hong S-K, Sato Y, Matsuoka M (2003) Roles of rice GL2-type homeobox genes in epidermis differentiation. Breed Sci 53:245–253

    Article  CAS  Google Scholar 

  • Jin R, Klasfeld S, Zhu Y, Garcia MF, Xiao J, Han S-K, Konkol A, Wagner D (2021) LEAFY is a pioneer transcription factor and licenses cell reprogramming to floral fate. Nat Commun 12:1–14

    Article  CAS  Google Scholar 

  • Kamiya N, Nishimura A, Sentoku N, Takabe E, Nagato Y, Kitano H, Matsuoka M (2003) Rice globular embryo 4 (gle4) mutant is defective in radial pattern formation during embryogenesis. Plant Cell Physiol 44:875–883

    Article  CAS  PubMed  Google Scholar 

  • Kaya H, Shibahara KI, Taoka KI, Iwabuchi M, Stillman B, Araki T (2001) FASCIATA genes for chromatin assembly factor-1 in arabidopsis maintain the cellular organization of apical meristems. Cell 104:131–142

    Article  CAS  PubMed  Google Scholar 

  • Khatun S, Flowers T (1995) The estimation of pollen viability in rice. J Exp Bot 46:151–154

    Article  CAS  Google Scholar 

  • King HW, Klose RJ (2017) The pioneer factor OCT4 requires the chromatin remodeller BRG1 to support gene regulatory element function in mouse embryonic stem cells. Elife 6:e22631

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwon CS, Chen C, Wagner D (2005) WUSCHEL is a primary target for transcriptional regulation by SPLAYED in dynamic control of stem cell fate in Arabidopsis. Genes Dev 19:992–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon CS, Hibara K, Pfluger J, Bezhani S, Metha H, Aida M, Tasaka M, Wagner D (2006) A role for chromatin remodeling in regulation of CUC gene expression in the Arabidopsis cotyledon boundary. Development 133:3223–3230

    Article  CAS  PubMed  Google Scholar 

  • Lai X, Blanc-Mathieu R, GrandVuillemin L, Huang Y, Stigliani A, Lucas J, Thevenon E, Loue-Manifel J, Turchi L, Daher H, Brun-Hernandez E, Vachon G, Latrasse D, Benhamed M, Dumas R, Zubieta C, Parcy F (2021) The LEAFY floral regulator displays pioneer transcription factor properties. Mol Plant 14:829–837

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Xie Y, Ma J, Luo X, Nie P, Zuo Z, Lahrmann U, Zhao Q, Zheng Y, Zhao Y, Xue Y, Ren J (2015) IBS: an illustrator for the presentation and visualization of biological sequences. Bioinformatics 31:3359–3361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66–69

    Article  CAS  PubMed  Google Scholar 

  • Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu JK (2013) Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant 6:2008–2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer U, Ruiz RAT, Berleth T, Miséra S, Jürgens G (1991) Mutations affecting body organization in the Arabidopsis embryo. Nature 353:402–407

    Article  Google Scholar 

  • Moyroud E, Tichtinsky G, Parcy F (2009) The LEAFY gloral regulators in angiosperms: conserved proteins with diverse roles. J Plant Biol 52:177–185

    Article  CAS  Google Scholar 

  • Mukherjee K, Brocchieri L, Burglin TR (2009) A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol 26:2775–2794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura A, Ito M, Kamiya N, Sato Y, Matsuoka M (2002) OsPNH1 regulates leaf development and maintenance of the shoot apical meristem in rice. Plant J 30:189–201

    Article  CAS  PubMed  Google Scholar 

  • Palovaara J, de Zeeuw T, Weijers D (2016) Tissue and organ initiation in the plant embryo: a first time for everything. Annu Rev Cell Dev Biol 32:47–75

    Article  CAS  PubMed  Google Scholar 

  • Pearson K (1900) X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Lond Edinburgh Dublin Philos Magazine J Sci 50:157–175

    Article  Google Scholar 

  • Plackett AR, Conway SJ, Hewett Hazelton KD, Rabbinowitsch EH, Langdale JA, Di Stilio VS (2018) LEAFY maintains apical stem cell activity during shoot development in the fern Ceratopteris richardii. Elife 7:e39625

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato Y, Hong S-K, Tagiri A, Kitano H, Yamamoto N, Nagato Y, Matsuoka M (1996) A rice homeobox gene, OSH1, is expressed before organ differentiation in a specific region during early embryogenesis. Proc Natl Acad Sci 93:8117–8122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato Y, Sentoku N, Nagato Y, Matsuoka M (1998) Isolation and characterization of a rice homebox gene, OSH15. Plant Mol Biol 38:983–997

    Article  CAS  PubMed  Google Scholar 

  • Sayou C, Nanao MH, Jamin M, Pose D, Thevenon E, Gregoire L, Tichtinsky G, Denay G, Ott F, Peirats Llobet M, Schmid M, Dumas R, Parcy F (2016) A SAM oligomerization domain shapes the genomic binding landscape of the LEAFY transcription factor. Nat Commun 7:11222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sentoku N, Sato Y, Kurata N, Ito Y, Kitano H, Matsuoka M (1999) Regional expression of the rice KN1-type homeobox gene family during embryo, shoot, and flower development. Plant Cell 11:1651–1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shenghua W, Fang C, Kaida Z (2000) In vitro pollen germination of rice (Oryza sativa L.). Zuo Wu Xue Bao 26:609–612

    Google Scholar 

  • Smith LG, Jackson D, Hake S (1995) Expression of knotted1 marks shoot meristem formation during maize embryogenesis. Dev Genet 16:344–348

    Article  Google Scholar 

  • Sugimoto N (1997) Temporal and spatial expression pattern of rice α-amylase gene Ramy1A during seed development. Rice Genet Newsl 14:148–150

    Google Scholar 

  • Sun B, Zhou Y, Cai J, Shang E, Yamaguchi N, Xiao J, Looi L-S, Wee W-Y, Gao X, Wagner D, Ito T (2019) Integration of Transcriptional Repression and Polycomb-Mediated Silencing of WUSCHEL in Floral Meristems. Plant Cell 31:1488–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanahashi T, Sumikawa N, Kato M, Hasebe M (2005) Diversification of gene function: homologs of the floral regulator FLO/LFY control the first zygotic cell division in the moss Physcomitrella patens. Development 132:1727–1736

    Article  CAS  PubMed  Google Scholar 

  • Tao Z, Shen L, Gu X, Wang Y, Yu H, He Y (2017) Embryonic epigenetic reprogramming by a pioneer transcription factor in plants. Nature 551:124–128

    Article  PubMed  CAS  Google Scholar 

  • Truernit E, Haseloff J (2007) A role for KNAT class II genes in root development. Plant Signal Behav 2:10–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsuda K, Ito Y, Sato Y, Kurata N (2011) Positive autoregulation of a KNOX gene is essential for shoot apical meristem maintenance in rice. Plant Cell 23:4368–4381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner D, Meyerowitz EM (2002) SPLAYED, a novel SWI/SNF ATPase homolog, controls reproductive development in Arabidopsis. Curr Biol 12:85–94

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843–859

    Article  CAS  PubMed  Google Scholar 

  • Wu MF, Sang Y, Bezhani S, Yamaguchi N, Han SK, Li Z, Su Y, Slewinski TL, Wagner D (2012) SWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and control floral organ identity with the LEAFY and SEPALLATA3 transcription factors. Proc Natl Acad Sci 109:3576–3581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Shen WH (2008) Polycomb silencing of KNOX genes confines shoot stem cell niches in Arabidopsis. Curr Biol 18:1966–1971

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Yuan D, Liu M, Li C, Liu Y, Zhang S, Yao N, Yang C (2013) AtMMS21, an SMC5/6 complex subunit, is involved in stem cell niche maintenance and DNA damage responses in Arabidopsis roots. Plant Physiol 161:1755–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Gao M, Yin X, Liu J, Xu Y, Zeng L, Li Q, Zhang S, Wang J, Zhang X, He Z (2013) Control of rice embryo development, shoot apical meristem maintenance, and grain yield by a novel cytochrome P450. Mol Plant 6:1945–1960

    Article  CAS  PubMed  Google Scholar 

  • Yi J, Lee Y-S, Lee D-Y, Cho M-H, Jeon J-S, An G (2016) OsMPK6 plays a critical role in cell differentiation during early embryogenesis in Oryza sativa. J Exp Bot 67:2425–2437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Pro. Jiankang Zhu and Pro. Caixia Gao for offering the CRISPR/Cas9 gene-editing vector, and thank Pro. Junko Kyozuka for the gift of rfl/apo2 mutant seeds. We also appreciate the Biogle and Biorun Geneme Editing Center for producing transgenic rice.

Funding

This study was supported by the National Natural Science Foundation of China (Grant number 31872855 and 31971842).

Author information

Authors and Affiliations

Authors

Contributions

QX, CD and YD designed the research. QX, MM, YS, CR, JL, TZ and CD performed the experiments. QX and CD analyzed the data and prepared the paper.

Corresponding author

Correspondence to Chengqiang Ding.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Accession numbers

Gene information in this article can be found in Rice Annotation Project database, miRbase data libraries and the Arabidopsis Information Resource are under the corresponding accession numbers: OsUBQ (Os03g0234200), OsSYD (Os06g0255200), RFL/APO2 (Os04g0598300), OsBRM (Os02g0114000), Roc1 (Os08g0187500), OsSCR (Os12g0122000), OsPNH1 (Os06g0597400), OSH1 (Os03g0727000), OSH6 (Os01g0302500), OSH15 (Os07g0129700), OSH71(Os05g0129700), RAmy1A(Os02g0765600).

Additional information

Communicated by Xian Sheng Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 388 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xun, Q., Mei, M., Song, Y. et al. SWI2/SNF2 chromatin remodeling ATPases SPLAYED and BRAHMA control embryo development in rice. Plant Cell Rep 41, 1389–1401 (2022). https://doi.org/10.1007/s00299-022-02864-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-022-02864-z

Keywords

Navigation