Skip to main content
Log in

Characterization of genes specific to sua-CMS in Nicotiana tabacum

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Six unique ORFs were characterized in tobacco plants with sua-CMS sterile cytoplasm, identifying the mtDNA basis for pollen sterility.

Abstract

sua-CMS (cytoplasmic male sterility), the most widely used sterile system in tobacco hybrids, is the only CMS type identified as having no negative effects on agronomic or quality traits in tobacco (Nicotiana tabacum) and as being fully male sterile. CMS is often associated with alterations of mitochondrial DNA (mtDNA), including novel chimeric open reading frames (ORFs), which result from rearrangement and recombination. Here, we obtained 34 mitochondrial ORFs in the sua-CMS line msZhongyan100 (sZY) by BLAST analysis. When we amplified these mitochondrial ORFs in seven tobacco CMS lines including sua-, glu-, rep-, rus-, tab1-, tab2-, and tab3-CMS types and in fertile tobacco, we found that six ORFs—orf82, orf103, orf115a, orf91, orf115b, and orf100—were located in three small regions (m-sr) of the mitochondrial genome of sZY and were unique to the sua-CMS line. We further amplified the m-sr fragments in three different backcross populations of the seven types of CMS, three F1 hybrids with sua-CMS sterile cytoplasm, two sua-CMS lines, and 284 fertile tobacco accessions. The ORFs were specific to plants with the sua-CMS background. All six unique ORFs were chimeric and had no homology with the mitochondrial genomes of fertile tobacco. Transcript analysis revealed that the ORFs were highly expressed in the anthers and floral buds of sZY. These six ORFs were specific to sua-CMS and could be used as molecular markers to identify sua-CMS lines, which is useful for improving breeding for heterosis in tobacco.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 15:403–410

    Article  Google Scholar 

  • Baranwal VK, Mikkilineni V, Zehr UB, Tyagi AK, Kapoor S (2012) Heterosis: emerging ideas about hybrid vigour. J Exp Bot 18:6309–6314

    Article  CAS  Google Scholar 

  • Bonhomme S, Budar F, Lancelin D, Small I, Defrance MC, Pelletier G (1992) Sequence and transcript analysis of the Nco2.5 ogura-specific fragment correlation with cytoplasmic male sterility in Brassica cybrids. Mol Gen Genet 235:340–348

    Article  PubMed  CAS  Google Scholar 

  • Cao JL, Yu J (2017) Utilization and insights on flue-cured tobacco hybrids in Zimbabwe. Tob Sci Technol 50:17–24

    Google Scholar 

  • Cardi T, Bastia T, Monti L, Earle ED (1999) Organelle DNA and male fertility variation in Solanum spp. and interspecific somatic hybrids. Theor Appl Genet 99:819–828

    Article  CAS  Google Scholar 

  • Chen L, Liu YG (2014) Male sterility and fertility restoration in crops. Annu Rev Plant Biol 65:579–606

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Dufay M, Touzet P, Maurice S, Cuguen J (2007) Modelling the maintenance of male-fertile cytoplasm in a gynodioecious population. Heredity 99:349–356

    Article  PubMed  CAS  Google Scholar 

  • Farbos I, Mouras AA, Glimelius K (2001) Defective cell proliferation in the floral meristem of alloplasmic plants of Nicotiana tabacum leads to abnormal floral organ development and male sterility. Plant J 26:131–142

    Article  PubMed  CAS  Google Scholar 

  • Fitter JT, Thomas MR, Niu C, Rose RJ (2005) Investigation of Nicotiana tabacum (+) N. suaveolens cybrids with carpelloid stamens. J Plant Physiol 162:225–235

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Melendi P, Uyttewaal M, Morcillo CN, Hernandez Mora JR, Fajardo S, Budar F, Lucas MM (2008) A light and electron microscopy analysis of the events leading to male sterility in Ogu-INRA CMS of rapeseed (Brassica napus). J Exp Bot 59:827–838

    Article  PubMed  CAS  Google Scholar 

  • Gualberto JM, Newton KJ (2017) Plant mitochondrial genomes: synamics and mechanisms of mutation. Annu Rev Plant Biol 68:225–252

    Article  PubMed  CAS  Google Scholar 

  • Handa H (2003) The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rape seed (Brassica napus L) comparative analysis of the mitochondrial genomes of rape seed and Arabidopsis thaliana. Nucleic Acids Res 31:5907–5916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16(Suppl 1):S154–S169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heng S, Chen F, Wei C, Hu K, Yang Z, Wen J, Yi B, Ma C, Tu J, Si P, Fu T, Shen J (2017) Identification of different cytoplasms based on newly developed mitotype-specific markers for marker-assisted selection breeding in Brassica napus L. Plant Cell Rep 36:901–909

    Article  PubMed  CAS  Google Scholar 

  • Horn R, Gupta KJ, Colombo N (2014) Mitochondrion role in molecular basis of cytoplasmic male sterility. Mitochondrion 19:198–205

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Lim H, Park S, Cho KH, Sung SK, Oh DG, Kim KT (2007) Identification of a novel mitochondrial genome type and development of molecular makers for cytoplasm classification in radish (Raphanus sativus L.). Theor Appl Genet 115:1137–1145

    Article  PubMed  CAS  Google Scholar 

  • Lee YP, Park S, Lim C, Kim H, Lim H, Ahn Y, Sung SK, Yoon MK, Kim S (2008) Discovery of a novel cytoplasmic male-sterility and its restorer lines in radish (Raphanus sativus L.). Theor Appl Genet 117:905–913

    Article  PubMed  Google Scholar 

  • Li F, Yang A, Lv J, Gong D, Sun Y (2016) The complete mitochondrial genome sequence of sua-type cytoplasmic male sterility of tobacco (Nicotiana tabacum). Mitochondrial DNA Part A DNA Mapp Seq Anal 27:2929–2930

    Article  CAS  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma W, Zhang H, Bai Y, Li Y, Chen J (2005) Comparison of traits of the mail sterile lines and their maintainer lines of flue-cured tobacco. J Hunan Agric Univ (Nat Sci) 31:496–499

    CAS  Google Scholar 

  • McCabe PF, Levine A, Meijer PJ, Tapon NA, Pennell RI (1997) A programmed cell death pathway activated in carrot cells cultured at low cell density. Plant J 12:267–280

    Article  CAS  Google Scholar 

  • Millar AH, Whelan J, Soole KL, Day DA (2011) Organization and regulation of mitochondrial respiration in plant. Annu Rev Plant Biol 62:79–104

    Article  PubMed  CAS  Google Scholar 

  • Pollak PE (1992) Cytological differences between a cytoplasmic male sterile tobacco hybrid and its fertile counterpart during early anther development. Am J Bot 79:937–945

    Article  Google Scholar 

  • Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B (2000) Artemis: sequence visualization and annotation. Bioinformatics 16:944–945

    Article  PubMed  CAS  Google Scholar 

  • Satoh M, Kubo T, Mikami T (2006) The Owen mitochondrial genome in sugar beet (Beta vulgaris L.): possible mechanisms of extensive rearrangements and the origin of the mitotype-unique regions. Theor Appl Genet 113:477–484

    Article  PubMed  CAS  Google Scholar 

  • Sloan DB, Alverson AJ, Chuckalovcak JP, Wu M, McCauley DE, Palmer JD, Taylor DR (2012) Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol 10:e1001241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sugiyama Y, Watase Y, Nagase M, Makita N, Yagura S, Hirai A, Sugiura M (2005) The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol Gen Genom 272:603–615

    Article  CAS  Google Scholar 

  • Tan Y, Xu X, Wang C, Cheng G, Li S, Liu X (2015) Molecular characterization and application of a novel cytoplasmic male sterility-associated mitochondrial sequence in rice. BMC Genet 16:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang H, Zheng X, Li C, Xie X, Chen Y, Chen L, Zhao X, Zheng H, Zhou J, Ye S, Guo J, Liu YG (2017) Multi-step formation, evolution, and functionalization of new cytoplasmic male sterility genes in the plant mitochondrial genomes. Cell Res 27:130–146

    Article  PubMed  CAS  Google Scholar 

  • Tong D (1997) Tobacco breeding. China Agricultural Press, Beijing, pp 279–294

    Google Scholar 

  • Touzet P, Meyer EH (2014) Cytoplasmic male sterility and mitochondrial metabolism in plants. Mitochondrion 19:166–171

    Article  PubMed  CAS  Google Scholar 

  • Unseld M, Marienfeld JR, Brandt P, Brennicke A, Handa H (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet 15:57–61

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Cuthbert JM, Taylor DR, Sloan DB (2015) The massive mitochondrial genome of the angiosperm Silene noctiflora is evolving by gain or loss of entire chromosomes. Proc Natl Acad Sci 112:10185–10191

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xue Z, Xu X, Zhou Y, Wang X, Zhang Y, Liu D, Zhao B, Duan L, Qi X (2018) Deficiency of a triterpene pathway results in humidity-sensitive genic male sterility in rice. Nat Commun 9:604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang S, Terachi T, Yamagishi H (2008) Inhibition of chalcone synthase expression in anthers of Raphanus sativus with Ogura male sterile cytoplasm. Ann Bot 102:483–489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang W, Lou X, Li J, Pu M, Mirbahar AA, Liu D, Sun J, Zhan K, He L, Zhang A (2017) Cloning and functional analysis of MADS-box genes, TaAG-A and TaAG-B, from a wheat K-type cytoplasmic male sterile line. Front Plant Sci 8:1081

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan SC, Zhang ZG, He HH, Zen HL, Lu KY, Lian JH, Wang BX (1993) Two photoperiodic-reactions in photoperiod-sensitive genic male-sterile rice. Crop Sci 33:651–660

    Article  Google Scholar 

  • Zhao T, Zhu T, Liu Q, Zhang M, Jiang H (2009) SNP in tobacco mitochondrial gene atp6 and its correlation with CMS. Acta Agron Sin 35:1655–1661

    Article  CAS  Google Scholar 

  • Zhao N, Xu X, Wamboldt Y, Mackenzie SA, Yang X, Hu Z, Yang J, Zhang M (2016) MutS HOMOLOG1 silencing mediates ORF220 substoichiometric shifting and causes male sterility in Brassica juncea. J Exp Bot 67:435–444

    Article  PubMed  CAS  Google Scholar 

  • Zubko MK, Zubko EI, Ruban AV, Adler K, Mock HP, Misera S, Gleba YY, Grimm B (2001) Extensive developmental and metabolic alterations in cybrids Nicotiana tabacum (+ Hyoscyamus niger) are caused by complex nucleo-cytoplasmic incompatibility. Plant J 25:627–639

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Min Ren and Xinwei Zhang for providing the genomic DNA of the 284 fertile tobacco accessions. The present investigation was financially supported by the Agricultural Science and Technology Innovation Program (ASTIP-TRIC02) and the Key Laboratory for Utilization of Gene Resources of Tobacco Program (110201603007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aiguo Yang or Fengxia Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Carlos F. Quiros.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 52 KB)

Supplementary material 2 (JPEG 457 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Liu, Z., Sun, Y. et al. Characterization of genes specific to sua-CMS in Nicotiana tabacum. Plant Cell Rep 37, 1245–1255 (2018). https://doi.org/10.1007/s00299-018-2309-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-018-2309-2

Keywords

Navigation