Skip to main content
Log in

Membrane anchors effectively traffic recombinant human glucocerebrosidase to the protein storage vacuole of Arabidopsis seeds but do not adequately control N-glycan maturation

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Human glucocerebrosidase with vacuolar anchoring domains was targeted to protein storage vacuoles (PSVs) of Arabidopsis seeds, but unexpectedly via the Golgi complex. PSV-targeting to effectively avoid problematic N-glycans is protein dependent.

Abstract

Plant-specific N-glycosylation patterns elaborated within the Golgi complex are a major limitation of using plants to produce biopharmaceuticals as the presence of β1,2 xylose and/or α1,3 fucose residues on the recombinant glycoprotein can render the product immunogenic if administrated parenterally. A reporter protein fused to a vacuolar membrane targeting motif comprised of the BP-80 transmembrane domain (TMD), and the cytoplasmic tail (CT) of α-tonoplast intrinsic protein (α-TIP) is delivered to protein storage vacuoles (PSVs) of tobacco seeds by ER-derived transport vesicles that bypass the Golgi complex. This prompted us to investigate whether a pharmaceutical glycoprotein is targeted to PSVs using the same targeting sequences, thus avoiding the unwanted plant-Golgi-specific complex N-glycan modifications. The human lysosomal acid β-glucosidase (glucocerebrosidase; GCase) (EC 3.2.1.45) fused to the BP-80 TMD and α-TIP CT was produced in Arabidopsis thaliana wild-type (Col-0) seeds. The chimeric GCase became localized in PSVs but transited through the Golgi complex, as indicated by biochemical analyses of the recombinant protein’s N-glycans. Our findings suggest that use of this PSV-targeting strategy to avoid problematic N-glycan maturation on recombinant therapeutic proteins is not consistently effective, as it is likely protein- and/or species-specific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

α-TIP:

α-tonoplast intrinsic protein

CT:

Cytoplasmic tail

Endo H:

Endoglycosidase H

ERT:

Enzyme replacement therapy

GCase:

Human glucocerebrosidase

LV:

Lytic vacuole

4-MUGP:

4-Methylumbelliferyl β-D-glucopyranoside

PSV:

Protein storage vacuole

TMD:

Transmembrane domain

References

  • Aerts JM (2003) Biochemistry of glycosphingolipid storage disorders: implications for therapeutic intervention. Philos Trans R Soc Lond B Biol Sci 358:905–914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bardor M, Faveeuw C, Fitchette AC, Gilbert D, Galas L, Trottein F, Faye L, Lerouge P (2003) Immunoreactivity in mammals of two typical plant glyco-epitopes, core alpha (1,3)-fucose and core xylose. Glycobiology 13:427–434

    Article  CAS  PubMed  Google Scholar 

  • Berg-Fussman A, Grace ME, Ioannou Y, Grabowski GA (1993) Human acid beta-glucosidase. N-glycosylation site occupancy and the effect of glycosylation on enzymatic activity. J Biol Chem 268:14861–14866

    CAS  PubMed  Google Scholar 

  • Bergmann JE, Grabowski GA (1989) Posttranslational processing of human lysosomal acid beta-glucosidase: a continuum of defects in Gaucher disease type 1 and type 2 fibroblasts. Am J Hum Genet 44:741–750

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beutler E, Grabowski GA (2001) Gaucher disease. In: Scriver CR et al (eds) The metabolic and molecular bases of inherited disease, vol III, 8th edn. McGraw-Hill, New York, pp 3635–3668

    Google Scholar 

  • Bijsterbosch MK, Donker W, van de Bilt H, van Weely S, van Berkel TJ, Aerts JM (1996) Quantitative analysis of the targeting of mannose-terminal glucocerebrosidase. Predominant uptake by liver endothelial cells. Eur J Biochem 237:344–349

    Article  CAS  PubMed  Google Scholar 

  • Boothe J, Nykiforuk C, Shen Y, Zaplachinski S, Szarka S, Kuhlman P, Murray E, Morck D, Moloney MM (2010) Seed-based expression system for plant molecular farming. Plant Biotechnol J 8:588–606

    Article  CAS  PubMed  Google Scholar 

  • Brumshtein B, Salinas P, Peterson B, Chan V, Silman I, Sussman JL, Savickas PJ, Robinson GS, Futerman AH (2010) Characterization of gene-activated human acid-β-glucosidase. Crystal structure, glycan composition, and internalization into macrophages. Glycobiology 20:24–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Downing WL, Galpin JD, Clemens S, Lauzon SM, Samuels AL, Pidkowich MS, Clarke LA, Kermode AR (2006) Synthesis of enzymatically active human α-L-iduronidase in Arabidopsis cgl (complex glycan-deficient) seeds. Plant Biotechnol J 4:169–181

    Article  CAS  PubMed  Google Scholar 

  • Downing WL, Hu X, Kermode AR (2007) Post-transcriptional factors are important for high-level expression of the human α-L-iduronidase gene in Arabidopsis cgl (complex glycan-deficient) seeds. Plant Sci 172:327–334

    Article  CAS  Google Scholar 

  • Faye L, Gomord V (2010) Success stories in molecular farming-a brief overview. Plant Biotechnol J 8:525–528

    Article  PubMed  Google Scholar 

  • Friedman B, Vaddi K, Preston C, Mahon E, Cataldo JR, McPherson JM (1999) A comparison of the pharmacological properties of carbohydrate remodeled recombinant and placental-derived beta-glucocerebrosidase: implications for clinical efficacy in treatment of Gaucher disease. Blood 93:2807–2816

    CAS  PubMed  Google Scholar 

  • Fung KL, Yim Y, Tse YC, Miao YS, Sun SS, Jiang LW (2005) Targeting and processing of membrane-anchored YFP fusion proteins to protein storage vacuoles in transgenic tobacco seeds. Seed Sci Res 15:361–364

    Article  CAS  Google Scholar 

  • Furbish FS, Steer CJ, Krett NL, Barranger JA (1981) Uptake and distribution of placental glucocerebrosidase in rat hepatic cells and effects of sequential deglycosylation. Biochim Biophys Acta 673:425–434

    Article  CAS  PubMed  Google Scholar 

  • Gillespie J, Rogers SW, Deery M, Dupree P, Rogers JC (2005) A unique family of proteins associated with internalized membranes in protein storage vacuoles of the Brassicaeae. Plant J 41:429–441

    Article  CAS  PubMed  Google Scholar 

  • Gomord V, Fischette AC, Menu-Bouaouiche L, Saint-Jore-Dupas C, Plasson C, Michaud D, Faye L (2010) Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol J 8:564–587

    Article  CAS  PubMed  Google Scholar 

  • Grabowski GA (2008) Phenotype, diagnosis, and treatment of Gaucher’s disease. Lancet 372:1263–1271

    Article  CAS  PubMed  Google Scholar 

  • Grabowski GA, Goldblatt J, Dinur T, Kruse J, Svennerholm L, Gatt S, Desnick RJ (1985) Genetic heterogeneity in Gaucher disease: physicokinetic and immunologic studies of the residual enzyme in cultured fibroblasts from non-neuronopathic and neuronpathic patients. Am J Med Genet 21:529–549

    Article  CAS  PubMed  Google Scholar 

  • He X, Galpin JD, Tropak MB, Mahuran D, Haselhorst T, von Itzstein M, Kolarich D, Packer NH, Miao YS, Jiang LW, Grabowski GA, Clarke LA, Kermode AR (2012a) Production of active human glucocerebrosidase in seeds of Arabidopsis thaliana complex-glycan-deficient (cgl) plants. Glycobiology 22:492–503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He X, Haselhorst T, von Itzstein M, Kolarich D, Packer NH, Kermode AR (2012b) Influence of an ER-retention signal on the N-glycosylation of recombinant human alpha-L-iduronidase generated in seeds of Arabidopsis. Plant Molec Biol 79:157–162

    Article  CAS  Google Scholar 

  • Jiang L, Rogers JC (1998) Integral membrane protein sorting to vacuoles in plant cells: evidence for two pathways. J Cell Biol 143:1183–1199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang LW, Rogers JC (2001) Compartmentation of proteins in the protein storage vacuole, a compound organelle in plant cells. Adv Bot Res 35:139–173

    Article  CAS  Google Scholar 

  • Jiang L, Sun SS (2002) Membrane anchors for vacuolar targeting: application in plant bioreactors. Trends Biotechnol 20:99–102

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Phillips TE, Rogers SW, Rogers JC (2000) Biogenesis of the protein storage vacuole crystalloid. J Cell Biol 150:755–770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jonsson LM, Murray GJ, Sorrell SH, Strijland A, Aerts JF, Ginns EI, Barranger JA, Tager JM, Schram AW (1987) Biosynthesis and maturation of glucocerebrosidase in Gaucher fibroblasts. Eur J Biochem 164:171–179

    Article  CAS  PubMed  Google Scholar 

  • Kang TS, Stevens RC (2009) Structural aspects of therapeutic enzymes to treat metabolic disorders. Human Mutat 30:1591–1610

    Article  CAS  Google Scholar 

  • Katavic V, Haugh GW, Reed D, Martin M, Kunst L (1994) In planta transformation of Arabidopsis thaliana. Mol Gen Genet 245:363–370

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki N, Itoh S, Hashii N, Takakura D, Qin Y, Huang X, Yamaguchi T (2009) The significance of glycosylation analysis in development of biopharmaceuticals. Biol Pharm Bull 32:796–800

    Article  CAS  PubMed  Google Scholar 

  • Kermode AR (1996) Mechanisms of intracellular protein transport and targeting. Crit Rev Plant Sci 15:285–423

    Article  CAS  Google Scholar 

  • Kermode AR (2012) Seed expression systems for molecular farming. In: Wang A, Ma S, (eds) Molecular farming in plants: recent advances and future prospects, Springer, New York, pp 89−123. doi:10.1007/978-94-007-2217-0_5

  • Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

    Article  CAS  Google Scholar 

  • Lauriere M, Lauriere C, Chrispeels MJ, Johnson KD, Sturm A (1989) Characterization of a xylose-specific antiserum that reacts with the complex asparagine-linked glycans of extracellular and vacuolar glycoproteins. Plant Physiol 90:1182–1188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette-Lainé AC, Gomord V, Faye L (1998) N-glycosylation of recombinant pharmaceutical glycoproteins produced in transgenic plants: towards an humanisation of plant N-glycans. Plant Mol Biol 38:31–48

    Article  CAS  PubMed  Google Scholar 

  • Loos A, Van Droogenbroeck B, Hillmer S, Grass J, Kunert R, Cao J, Robinson DG, Depicker A, Steinkellner H (2011) Production of monoclonal antibodies with a controlled N-glycosylation pattern in seeds of Arabidopsis thaliana. Plant Biotechnol J 9:179–192

    Article  CAS  PubMed  Google Scholar 

  • Maxmen A (2012) Drug-making plant blooms. Nature 485:160

    Article  CAS  PubMed  Google Scholar 

  • Patti T, Bembi B, Cristin P, Mazzarol F, Secco E, Pappalardo C, Musetti R, Martinuzzi M, Versolatto S, Cariati R, Dardis A, Marchetti S (2012) Endosperm-specific expression of human acid β-glucosidase in a waxy rice. Rice 5:34

    Article  PubMed  Google Scholar 

  • Reggi S, Marchetti S, Patti T, De Amicis F, Cariati R, Bembi B, Fogher C (2005) Recombinant human acid β-glucosidase stored in tobacco seed is stable, active and taken up by human fibroblasts. Plant Mol Biol 57:101–113

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor, NY

    Google Scholar 

  • Samyn-Petit B, Wajda Dubos JP, Chirat F, Coddeville B, Demaizieres G, Farrer S, Slomianny MC, Theisen M, Delannoy P (2003) Comparative analysis of the site-specific N-glycosylation of human lactoferrin produced in maize and tobacco plants. Eur J Biochem 270:3235–3242

    Article  CAS  PubMed  Google Scholar 

  • Schmitz J, Poll L W, vom Dahl S (2007) Therapy of adult gaucher disease. Hematol J 92: 148–152

  • Shaaltiel Y, Bartfeld Y, Hashmueli S, Baum G, Brill-Almon E, Galili G, Dym O, Boldin-Adamsky SA, Silman I, Sussman JL, Futerman AH, Aviezer D (2007) Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol J 5:579–590

    Article  CAS  PubMed  Google Scholar 

  • Tekoah Y, Tzaban S, Kizhner T, Hainrichson M, Gantman A, Golembo M, Aviezer D, Shaaltiel Y (2013) Glycosylation and functionality of recombinant β-glucocerebrosidase from various production systems. Biosci Rep 33:e00071. doi:10.1042/BSR20130081

    Article  PubMed Central  PubMed  Google Scholar 

  • Tse YC, Mo B, Hillmer S, Zhao M, Lo SW, Robinson DG, Jiang L (2004) Identification of multivesicular bodies as prevacuolar compartments in Nicotiana tabacum BY-2 cells. Plant Cell 16:672–693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang JQ, Miao YS, Jiang LW (2006) Response to Gomord et al.: golgi-bypassing: delivery of biopharmaceutical proteins to protein storage vacuoles in plant bioreactors. Trends Biotechnol 24:147–149

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Shen J, Cai Y, Robinson DG, Jiang L (2013) Successful transport to the vacuole of heterologously expressed mung bean 8S globulin occurs in seed but not in vegetative tissues. J Exp Bot 64:1587–1601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by a Michael Smith Foundation for Health Research Senior Scholar Award to A. R. K. (No. CI-SSH-01915[07-1]).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison R. Kermode.

Additional information

Communicated by Stefan Schillberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Galpin, J.D., Miao, Y. et al. Membrane anchors effectively traffic recombinant human glucocerebrosidase to the protein storage vacuole of Arabidopsis seeds but do not adequately control N-glycan maturation. Plant Cell Rep 33, 2023–2032 (2014). https://doi.org/10.1007/s00299-014-1677-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1677-5

Keywords

Navigation