Skip to main content

Advertisement

Log in

Toll-like receptor-7 activation in CD8+ T cells modulates inflammatory mediators in patients with rheumatoid arthritis

  • Original Research
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is an autoimmune disorder of unknown etiology with aberrant immunological responses leading to inflammation, swelling and pain of the joints. CD8+ T cells have been known to be one of the major immune modulators in the progression of RA and the presence of toll-like receptors (TLRs) on these cells further accentuate their role in RA. Herein, we report an increased expression of TLR7 in the endosomes of CD8+ T cells of RA patients correlating with disease severity. The stimulation of TLR7 with Imiquimod (IMQ) in these CD8+ T cells drives the signalling cascade via NFkB and pERK activation and hence an increase in the mRNA transcripts of signature cytokines and cytolytic enzymes. However, a parallel synthesis of Tristetraprolin (TTP), an mRNA destabilizing protein prevents the translation of the mRNA transcripts, leading to a rapid degeneration of the target mRNA. We thus report that a direct TLR7 ligation by its agonist increases cytokine transcript signature but not an equivalent protein surge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tripathy A, Khanna S, Padhan P, Smita S, Raghav S, Gupta B (2017) Direct recognition of LPS drive TLR4 expressing CD8+ T cell activation in patients with rheumatoid arthritis. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-01033-7

    Article  CAS  Google Scholar 

  2. Kotake S, Yago T, Kobashigawa T, Nanke Y (2017) The plasticity of Th17 cells in the pathogenesis of rheumatoid arthritis. J Clin Med 6:67. https://doi.org/10.3390/jcm6070067

    Article  CAS  PubMed Central  Google Scholar 

  3. Firestein GS, McInnes IB (2017) Immunopathogenesis of rheumatoid arthritis. Immunity 46:183–196. https://doi.org/10.1016/j.immuni.2017.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Deane KD (2014) Preclinical rheumatoid arthritis (autoantibodies): an updated review. Curr Rheumatol Rep 16:419. https://doi.org/10.1007/s11926-014-0419-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rudan I, Sidhu S, Papana A, Meng SJ, Xin-Wei Y, Wang W et al (2015) Prevalence of rheumatoid arthritis in low–and middle–income countries: a systematic review and analysis. J Glob Health. https://doi.org/10.7189/jogh.05.010409

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brennan FM, McInnes IB (2008) Evidence that cytokines play a role in rheumatoid arthritis. J Clin Invest 118:3537–3545. https://doi.org/10.1172/JCI36389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brennan FM, Maini RN, Feldmann M (1998) Role of pro-inflammatory cytokines in rheumatoid arthritis. Springer Semin Immunopathol 20(1–2):133–147. https://doi.org/10.1007/BF00832003

    Article  CAS  PubMed  Google Scholar 

  8. Gonzalez-Juanatey C, Testa A, Garcia-Castelo A, Garcia-Porrua C, Llorca J, Vidan J et al (2003) HLA-DRB1 status affects endothelial function in treated patients with rheumatoid arthritis. Am J Med 114:647–652. https://doi.org/10.1016/s0002-9343(03)00133-5

    Article  CAS  PubMed  Google Scholar 

  9. Deane KD, Demoruelle MK, Kelmenson LB, Kuhn KA, Norris JM, Holers VM (2017) Genetic and environmental risk factors for rheumatoid arthritis. Best Pract Res Clin Rheumatol 31:3–18. https://doi.org/10.1016/j.berh.2017.08.003

    Article  PubMed  PubMed Central  Google Scholar 

  10. Michou L, Croiseau P, Petit-Teixeira E, Du Montcel ST, Lemaire I, Pierlot C et al (2006) Validation of the reshaped shared epitope HLA-DRB1 classification in rheumatoid arthritis. Arthritis Res Ther 8:1–6. https://doi.org/10.1186/ar1949

    Article  CAS  Google Scholar 

  11. Du Montcel ST, Michou L, Petit-Teixeira E, Osorio J, Lemaire I, Lasbleiz S et al (2005) New classification of HLA–DRB1 alleles supports the shared epitope hypothesis of rheumatoid arthritis susceptibility. Arthritis Rheum 52:1063–1068. https://doi.org/10.1002/art.20989

    Article  CAS  PubMed  Google Scholar 

  12. Hensvold AH, Magnusson PK, Joshua V, Hansson M, Israelsson L, Ferreira R et al (2015) Environmental and genetic factors in the development of anticitrullinated protein antibodies (ACPAs) and ACPA-positive rheumatoid arthritis: an epidemiological investigation in twins. Ann Rheum Dis 74:375–380. https://doi.org/10.1136/annrheumdis-2013-203947

    Article  PubMed  Google Scholar 

  13. Rakieh C, Nam J, Hunt L, Hensor E, Das S, Bissell L et al (2015) Predicting the development of clinical arthritis in anti-CCP positive individuals with non-specific musculoskeletal symptoms: a prospective observational cohort study. Ann Rheum Dis 74:1659–1666. https://doi.org/10.1136/annrheumdis-2014-205227

    Article  CAS  PubMed  Google Scholar 

  14. Johannsen A, Susin C, Gustafsson A (2000) Smoking and inflammation: evidence for a synergistic role in chronic disease. Periodontol 2014(64):111–126. https://doi.org/10.1111/j.1600-0757.2012.00456.x

    Article  Google Scholar 

  15. Gan RW, Deane KD, Zerbe GO, Demoruelle MK, Weisman MH, Buckner JH et al (2013) Relationship between air pollution and positivity of RA-related autoantibodies in individuals without established RA: a report on SERA. Ann Rheum Dis 72:2002–2005. https://doi.org/10.1136/annrheumdis-2012-202949

    Article  PubMed  Google Scholar 

  16. Carvalheiro H, da Silva JAP, Souto-Carneiro MM (2013) Potential roles for CD8+ T cells in rheumatoid arthritis. Autoimmun Rev 12:401–409. https://doi.org/10.1002/art.38941

    Article  CAS  PubMed  Google Scholar 

  17. Wherry EJ, Ahmed R (2004) Memory CD8 T cell differentiation during viral infection. J Virol 78:5535–5545. https://doi.org/10.1128/JVI.78.11.5535-5545.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wong P, Pamer EG (2003) CD8 T cell responses to infectious pathogens. Annu Rev Immunol 21:29–70. https://doi.org/10.1146/annurev.immunol.21.120601.141114

    Article  CAS  PubMed  Google Scholar 

  19. Barry M, Bleackley RC (2002) Cytotoxic T lymphocytes: all roads lead to death. Nat Rev Immunol 2:401–409. https://doi.org/10.1038/nri819

    Article  CAS  PubMed  Google Scholar 

  20. Weyand CM, Zeisbrich M, Goronzy JJ (2017) Metabolic signatures of T cells and macrophages in rheumatoid arthritis. Curr Opin Immunol 46:112–120. https://doi.org/10.1016/j.coi.2017.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tran CN, Lundy SK, Fox DA (2005) Synovial biology and T cells in rheumatoid arthritis. Pathophysiology 12:183–189. https://doi.org/10.1016/j.pathophys.2005.07.005

    Article  CAS  PubMed  Google Scholar 

  22. van Amelsfort JM, Jacobs KM, Bijlsma JW, Lafeber FP, Taams LS (2004) CD4+ CD25+ regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum 50:2775–2785. https://doi.org/10.1002/art.20499

    Article  PubMed  Google Scholar 

  23. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511. https://doi.org/10.1038/nri1391

    Article  CAS  PubMed  Google Scholar 

  24. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216. https://doi.org/10.1146/annurev.immunol.20.083001.084359

    Article  CAS  PubMed  Google Scholar 

  25. Beutler B, Rietschel ET (2003) Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol 3:169–176. https://doi.org/10.1038/nri1004

    Article  CAS  PubMed  Google Scholar 

  26. Imanishi T, Hara H, Suzuki S, Suzuki N, Akira S, Saito T (2007) Cutting edge: TLR2 directly triggers Th1 effector functions. J Immunol 178:6715–6719. https://doi.org/10.4049/jimmunol.178.11.6715

    Article  CAS  PubMed  Google Scholar 

  27. Tabiasco J, Devêvre E, Rufer N, Salaun B, Cerottini J-C, Speiser D et al (2006) Human effector CD8+ T lymphocytes express TLR3 as a functional coreceptor. J Immunol 177:8708–8713. https://doi.org/10.4049/jimmunol.177.12.8708

    Article  CAS  PubMed  Google Scholar 

  28. Salerno F, Guislain A, Cansever D, Wolkers MC (2016) TLR-mediated innate production of IFN-γ by CD8+ T cells is independent of glycolysis. J Immunol 196:3695–3705. https://doi.org/10.4049/jimmunol.1501997

    Article  CAS  PubMed  Google Scholar 

  29. Karlsson L, Sun S, Rao NL, Venable J, Thurmond R (2007) TLR7/9 antagonists as therapeutics for immune-mediated inflammatory disorders. Inflamm Allergy-Drug Targets 6:223–235. https://doi.org/10.2174/187152807783334300

    Article  PubMed  Google Scholar 

  30. Diebold SS, Kaisho T, Hemmi H, Akira S, Sousa CR (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529–1531. https://doi.org/10.1126/science.1093616

    Article  CAS  PubMed  Google Scholar 

  31. Chamberlain ND, Kim S-J, Vila OM, Volin MV, Volkov S, Pope RM et al (2013) Ligation of TLR7 by rheumatoid arthritis synovial fluid single strand RNA induces transcription of TNFα in monocytes. Ann Rheum Dis 72:418–426. https://doi.org/10.1136/annrheumdis-2011-201203

    Article  CAS  PubMed  Google Scholar 

  32. Goh FG, Midwood KS (2012) Intrinsic danger: activation of Toll-like receptors in rheumatoid arthritis. Rheumatology 51:7–23. https://doi.org/10.1093/rheumatology/ker257

    Article  CAS  PubMed  Google Scholar 

  33. Bubna AK (2015) IMQ - Its role in the treatment of cutaneous malignancies. Indian J Pharmacol 47:354–359. https://doi.org/10.4103/0253-7613.161249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li ZJ, Sohn K-C, Choi D-K, Shi G, Hong D, Lee H-E et al (2013) Roles of TLR7 in activation of NF-κB signaling of keratinocytes by IMQ. PLoS ONE 8:e77159. https://doi.org/10.1371/journal.pone.0077159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meng F-Z, Liu J-B, Wang X, Wang P, Hu W-H, Hou W et al (2021) TLR7 activation of macrophages by IMQ inhibits HIV infection through modulation of viral entry cellular factors. Biology 10:661. https://doi.org/10.3390/biology10070661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tu Y, Wu X, Yu F, Dang J, Wang J, Wei Y et al (2019) Tristetraprolin specifically regulates the expression and alternative splicing of immune response genes in HeLa cells. BMC Immunol 20:1–13. https://doi.org/10.1186/s12865-019-0292-1

    Article  Google Scholar 

  37. Brooks SA, Blackshear PJ (2013) Tristetraprolin (TTP): interactions with mRNA and proteins, and current thoughts on mechanisms of action. Biochim Biophys Acta 1829:666–679. https://doi.org/10.1016/j.bbagrm.2013.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen Y-L, Jiang Y-W, Su Y-L, Lee S-C, Chang M-S, Chang C-J (2013) Transcriptional regulation of tristetraprolin by NF-κB signaling in LPS-stimulated macrophages. Mol Bio Rep 40:2867–2877. https://doi.org/10.1007/s11033-012-2302-8

    Article  CAS  Google Scholar 

  39. Tiedje C, Diaz-Muñoz MD, Trulley P, Ahlfors H, Laaß K, Blackshear PJ et al (2016) The RNA-binding protein TTP is a global post-transcriptional regulator of feedback control in inflammation. Nucleic Acid Res 44:7418–7440. https://doi.org/10.1093/nar/gkw474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Carvalheiro H, Duarte C, Silva-Cardoso S, Da Silva JA, Souto-Carneiro MM (2015) CD8+ T cell profiles in patients with rheumatoid arthritis and their relationship to disease activity. Arthrit Rheumatol 67:363–371. https://doi.org/10.1002/art.38941

    Article  CAS  Google Scholar 

  41. Davoine F, Sim A, Wierzbicki T, Leong C, Puttagunta L, McGaw T et al (2006) Human eosinophils express granzyme B and perforin: potential role in tumour killing in oral squamous cancer. J Allergy Clin Immunol 117:S15. https://doi.org/10.1016/j.jaci.2005.12.064

    Article  Google Scholar 

  42. Arleevskaya MI, Larionova R, Brooks WH, Bettacchioli E, Renaudineau Y (2019) Toll-like receptors, infections, and rheumatoid arthritis. Clin Rev Allergy Immunol. https://doi.org/10.1007/s12016-019-08742-z

    Article  Google Scholar 

  43. Huang Q-Q, Pope RM (2009) The role of toll-like receptors in rheumatoid arthritis. Curr Rheumatol Rep 11:357–364. https://doi.org/10.1007/s11926-009-0051-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rohr M, Narasimhulu CA, Hamid S, Parthasarathy S (2020) The dietary peroxidized lipid, 13-HPODE, promotes intestinal inflammation by mediating granzyme B secretion from natural killer cells. Food Funct 11:9526–9534. https://doi.org/10.1039/d0fo02328k

    Article  CAS  PubMed  Google Scholar 

  45. Paik J, Lee JY, Hwang D (2002) Signaling pathways for TNFa-induced COX-2 expression: mediation through MAP kinases and NFkB, and inhibition by certain nonsteroidal anti-inflammatory drugs. Eicosanoids and other bioactive lipids in cancer, inflammation, and radiation injury, Adv Exp Med Biol, vol 5. Springer, pp 503–508. https://doi.org/10.1007/978-1-4615-0193-0_77

    Chapter  Google Scholar 

  46. Yasumoto K, Okamoto S-I, Mukaida N, Murakami S, Mai M, Matsushima K (1992) Tumor necrosis factor alpha and interferon gamma synergistically induce interleukin 8 production in a human gastric cancer cell line through acting concurrently on AP-1 and NF-kB-like binding sites of the interleukin 8 gene. J Biol Chem 267:22506–22511

    Article  CAS  Google Scholar 

  47. Brooks SA, Connolly JE, Diegel RJ, Fava RA, Rigby WF (2002) Analysis of the function, expression, and subcellular distribution of human tristetraprolin. Arthrit Rheum 46:1362–1370. https://doi.org/10.1002/art.10235

    Article  CAS  Google Scholar 

  48. Yamasaki S (2018) Recent advances in the role of RNA-binding protein, tristetraprolin, in arthritis. Immunol Med 41:98–102. https://doi.org/10.1080/25785826.2018.1531187

    Article  PubMed  Google Scholar 

  49. Ross E, Naylor A, O’neil J, Crowley T, Ridley M, Crowe J et al (2017) Treatment of inflammatory arthritis via targeting of tristetraprolin, a master regulator of pro-inflammatory gene expression. Ann Rheum Dis 76:612–619. https://doi.org/10.1136/annrheumdis-2016-209424

    Article  CAS  PubMed  Google Scholar 

  50. Clark AR, Dean JL (2016) The control of inflammation via the phosphorylation and dephosphorylation of tristetraprolin: a tale of two phosphatases. Biochem Soc Tran 44:1321–1337. https://doi.org/10.1042/BST20160166

    Article  CAS  Google Scholar 

  51. Prabhala P, Bunge K, Rahman MM, Ge Q, Clark AR, Ammit AJ (2015) Temporal regulation of cytokine mRNA expression by tristetraprolin: dynamic control by p38 MAPK and MKP-1. Am J Physiol Lung Cellular Mol Physiol. 308:L973–L980

    Article  Google Scholar 

  52. Ross EA, Smallie T, Ding Q, O’Neil JD, Cunliffe HE, Tang T et al (2015) Dominant suppression of inflammation via targeted mutation of the mRNA destabilizing protein tristetraprolin. J Immunol 195:265–276. https://doi.org/10.4049/jimmunol.1402826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Deleault KM, Skinner SJ, Brooks SA (2008) Tristetraprolin regulates TNF TNF-α mRNA stability via a proteasome dependent mechanism involving the combined action of the ERK and p38 pathways. Mol Immunol 45:13–24. https://doi.org/10.1016/j.molimm.2007.05.017

    Article  CAS  PubMed  Google Scholar 

  54. Fallmann J, Sedlyarov V, Tanzer A, Kovarik P, Hofacker IL (2016) AREsite2: an enhanced database for the comprehensive investigation of AU/GU/U-rich elements. Nucleic Acid Res 44:D90–D95. https://doi.org/10.1093/nar/gkv1238

    Article  CAS  PubMed  Google Scholar 

  55. Dudek SE, Nitzsche K, Ludwig S, Ehrhardt C (2016) Influenza A viruses suppress cyclooxygenase-2 expression by affecting its mRNA stability. Sci Rep 6:1–13. https://doi.org/10.1038/srep27275

    Article  CAS  Google Scholar 

  56. Liu J, Sisk JM, Gama L, Clements JE, Witwer KW (2013) Tristetraprolin expression and microRNA-mediated regulation during simian immunodeficiency virus infection of the central nervous system. Mol Brain 6:1–10. https://doi.org/10.1186/1756-6606-6-40

    Article  CAS  Google Scholar 

  57. Tilburgs T, Schonkeren D, Eikmans M, Nagtzaam NM, Datema G, Swings GM et al (2010) Human decidual tissue contains differentiated CD8+ effector-memory T cells with unique properties. J Immunol 185:4470–4477. https://doi.org/10.4049/jimmunol.0903597

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. N. Brahma, Pradyumna Bal Memorial Hospital, Bhubaneswar, India for his kind help in collecting blood sample from healthy controls. Nitish Swain expresses his gratitude to University Grants Commission for Junior Research Fellowship [Ref No. 420/(CSIR-UGC NET DEC. 2017)]. Archana Tripathy is thankful to Department of Science and Technology for Senior Research Fellowship (Ref No.DST/INSPIRE/03/2014/000394).

Author information

Authors and Affiliations

Authors

Contributions

NS, BG, SR designed and conceptualized the work. NS, AT performed the experiments and drafted the work. NS, PP designed the workflow and recorded clinical data. NS, AT, BG drafted the manuscript. NS, BG, AT, PP, SR critically revised and approved the manuscript.

Corresponding author

Correspondence to Bhawna Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical statement

The study conducted with the human samples were approved by Institutional Ethical Approval Committee, KIIT University and were in accordance to the the Helsinki Declaration of 1975, as revised in 2000. Written informed consent was obtained from all the participants in this study. We would also like to confirm that this work has not been published elsewhere and is not under consideration by another journal. All the authors have approved the submission of the manuscript to Rheumatology International.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 509 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, N., Tripathy, A., Padhan, P. et al. Toll-like receptor-7 activation in CD8+ T cells modulates inflammatory mediators in patients with rheumatoid arthritis. Rheumatol Int 42, 1235–1245 (2022). https://doi.org/10.1007/s00296-021-05050-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-021-05050-8

Keywords

Navigation