Skip to main content

Advertisement

Log in

Increased short-term risk of cardiovascular events in inflammatory rheumatic diseases: results from a population-based cohort

  • Cohort Studies
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Cardiovascular diseases represent the first cause of death globally. Inflammatory rheumatic disease (IRMD) patients, due to their lifelong inflammatory status, are at increased risk of developing premature cardiovascular disease. We aimed to assess the risk for cardiovascular events (CVE) in a population-based study. We followed 10,153 adults from the EpiDoC Cohort, a large Portuguese population-based prospective study (2011–2016). IRMD patients were identified at baseline and followed during 5 years. CVE were defined as a composite of self-reported myocardial infarction or angina pectoris, arrhythmias, valvular disease, stroke or transient ischemic attack and peripheral artery disease. Statistical analysis was performed by utilizing multivariate logistic regression and goodness-of-fit and area under ROC curve. At baseline, IRMD patients had similar age as the non-IRMD participants (mean age 55 vs 53 years-old; 72.1% female); dyslipidaemia and sedentary lifestyle were more common (40.7% vs 31.4%, p = 0.033; 87.3% vs 67%, p = 0.016, respectively). During an average follow-up of 2.6 years, 26 CVE were reported among IRMD patients. IRMD patients had higher odd of CVE (OR 1.64, 95% CI 1.04–2.58; p = 0.03), despite comparable mortality rates (1.7% vs 0.7%, p = 0.806). A stepwise approach attained that gender, age, history of hypertension, body mass index, IRMD and follow-up time are the most important predictive variables of CVE (AUC 0.80). IRMD patients, at community level, have an increased short-term risk of major CVE when compared to non-IRMD, and that highlights the potential benefit of a systematic screening and more aggressive cardiovascular risk assessment and management of these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Timmis A, Townsend N, Gale C et al (2017) ESC scientific document group. European society of cardiology: cardiovascular disease statistics 2017. Eur Heart J 39(7):508–579. https://doi.org/10.1093/eurheartj/ehx628

    Article  Google Scholar 

  2. Benjamin EJ, Muntner P, Alonso A et al (2019) American heart association council on epidemiology and prevention statistics committee and stroke statistics subcommittee. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 139(10):e56–e528. https://doi.org/10.1161/CIR.0000000000000659

    Article  PubMed  Google Scholar 

  3. Piepoli MF, Hoes AW, Agewall S et al (2016) 2016 European guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J 37(29):2315–2381. https://doi.org/10.1093/eurheartj/ehw106

    Article  PubMed  PubMed Central  Google Scholar 

  4. Arnett DK, Blumenthal RS, Albert MA et al (2019) 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the american college of cardiology/american heart association task force on clinical practice guidelines. Circulation 140(11):e596–e646. https://doi.org/10.1161/CIR.0000000000000678

    Article  PubMed  PubMed Central  Google Scholar 

  5. Damen JA, Pajouheshnia R, Heus P et al (2019) Performance of the Framingham risk models and pooled cohort equations for predicting 10-year risk of cardiovascular disease: a systematic review and meta-analysis. BMC Med 17(1):109. https://doi.org/10.1186/s12916-019-1340-7

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mahmood SS, Levy D, Vasan RS, Wang TJ (2014) The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective. Lancet 383(9921):999–1008. https://doi.org/10.1016/S0140-6736(13)61752-3

    Article  PubMed  Google Scholar 

  7. Andersson C, Johnson AD, Benjamin EJ et al (2019) 70-year legacy of the Framingham Heart Study. Nat Rev Cardiol 16(11):687–698. https://doi.org/10.1038/s41569-019-0202-5

    Article  PubMed  Google Scholar 

  8. Farzadfar F (2019) Cardiovascular disease risk prediction models: challenges and perspectives. Lancet Glob Health 7(10):e1288–e1289. https://doi.org/10.1016/S2214-109X(19)30365-1

    Article  PubMed  Google Scholar 

  9. Wilson PW, D’Agostino RB, Levy D et al (1998) Prediction of coronary heart disease using risk factor categories. Circulation 97(18):1837–1847. https://doi.org/10.1161/01.cir.97.18.1837

    Article  CAS  PubMed  Google Scholar 

  10. Rao GHR (2018) Risk scores for acute vascular events: expectations and limitations. OAJC. https://doi.org/10.23880/OAJC-16000124

    Article  Google Scholar 

  11. Hemann BA, Bimson WF, Taylor AJ (2007) The Framingham risk score: an appraisal of its benefits and limitations. Am Heart Hosp J 5(2):91–96. https://doi.org/10.1111/j.1541-9215.2007.06350.x

    Article  PubMed  Google Scholar 

  12. Arts EEA, Popa CD, Den Broeder AA et al (2016) Prediction of cardiovascular risk in rheumatoid arthritis: performance of original and adapted SCORE algorithms. Ann Rheum Dis 75(4):674–680. https://doi.org/10.1136/annrheumdis-2014-206879

    Article  CAS  PubMed  Google Scholar 

  13. Crowson CS, Matteson EL, Roger VL et al (2012) Usefulness of risk scores to estimate the risk of cardiovascular disease in patients with rheumatoid arthritis. Am J Cardiol 110(3):420–424. https://doi.org/10.1016/j.amjcard.2012.03.044

    Article  PubMed  PubMed Central  Google Scholar 

  14. Colaco K, Ocampo V, Ayala AP et al (2020) Predictive utility of cardiovascular risk prediction algorithms in inflammatory rheumatic diseases: a systematic review. J Rheumatol 47(6):928–938. https://doi.org/10.3899/jrheum.190261

    Article  CAS  PubMed  Google Scholar 

  15. Agca R, Heslinga SC, Rollefstad S et al (2016) EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann Rheum Dis 76(1):17–28. https://doi.org/10.1136/annrheumdis-2016-209775

    Article  PubMed  Google Scholar 

  16. Gasparyan AY (2017) Cardiovascular risk and inflammation in rheumatic diseases. Rheumatol Int 37(1):1–2. https://doi.org/10.1007/s00296-016-3619-8

    Article  PubMed  Google Scholar 

  17. Biskup M, Biskup W, Majdan M, Targońska-Stępniak B (2018) Cardiovascular system changes in rheumatoid arthritis patients with continued low disease activity. Rheumatol Int 38(7):1207–1215. https://doi.org/10.1007/s00296-018-4053-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nurmohamed MT, Heslinga M, Kitas GD (2015) Cardiovascular comorbidity in rheumatic diseases. Nat Rev Rheumatol 11(12):693–704. https://doi.org/10.1038/nrrheum.2015.112

    Article  CAS  PubMed  Google Scholar 

  19. Arts EEA, Fransen J, den Broeder AA et al (2015) The effect of disease duration and disease activity on the risk of cardiovascular disease in rheumatoid arthritis patients. Ann Rheum Dis 74(6):998–1003. https://doi.org/10.1136/annrheumdis-2013-204531

    Article  CAS  PubMed  Google Scholar 

  20. Myasoedova E, Chandran A, Ilhan B et al (2016) The role of rheumatoid arthritis (RA) flare and cumulative burden of RA severity in the risk of cardiovascular disease. Ann Rheum Dis 75(3):560–565. https://doi.org/10.1136/annrheumdis-2014-206411

    Article  CAS  PubMed  Google Scholar 

  21. Navarini L, Margiotta DPE, Caso F et al (2018) Performances of five risk algorithms in predicting cardiovascular events in patients with Psoriatic Arthritis: an Italian bicentric study. PLoS ONE 13(10):e0205506. https://doi.org/10.1371/journal.pone.0205506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wibetoe G, Sexton J, Ikdahl E et al (2020) Prediction of cardiovascular events in rheumatoid arthritis using risk age calculations: evaluation of concordance across risk age models. Arthritis Res Ther 22(1):90. https://doi.org/10.1186/s13075-020-02178-z

    Article  PubMed  PubMed Central  Google Scholar 

  23. Crowson CS, Gabriel SE, Semb AG et al (2017) Rheumatoid arthritis-specific cardiovascular risk scores are not superior to general risk scores: a validation analysis of patients from seven countries. Rheumatology (Oxford) 56(7):1102–1110. https://doi.org/10.1093/rheumatology/kex038

    Article  CAS  Google Scholar 

  24. Ramiro S, Canhão H, Branco JC (2010) EpiReumaPt Protocol—Portuguese epidemiologic study of the rheumatic diseases. Acta Reumatol Port 35(3):384–390

    PubMed  Google Scholar 

  25. Rodrigues AM, Gouveia N, da Costa LP et al (2015) EpiReumaPt- the study of rheumatic and musculoskeletal diseases in Portugal: a detailed view of the methodology. Acta Reumatol Port 40(2):110–124

    PubMed  Google Scholar 

  26. Hochberg MC (1997) Updating the American college of rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40(9):1725. https://doi.org/10.1002/art.1780400928

    Article  CAS  PubMed  Google Scholar 

  27. Aletaha D, Neogi T, Silman AJ et al (2010) 2010 rheumatoid arthritis classification criteria: an American College of Against Rheumatism collaborative Rheumatology/European League initiative. Ann Rheum Dis 269(9):1580–1588. https://doi.org/10.1136/ard.2010.138461

    Article  Google Scholar 

  28. Rudwaleit M, Van Der Heijde D, Landewé R et al (2011) The Assessment of SpondyloArthritis International Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Ann Rheum Dis 70(1):25–31. https://doi.org/10.1136/ard.2010.133645

    Article  CAS  PubMed  Google Scholar 

  29. Bird HA, Esselinckx W, Dixon AS et al (1979) An evaluation of criteria for polymyalgia rheumatica. Ann Rheum Dis 38(5):434–439. https://doi.org/10.1136/ard.38.5.434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fleiss JL, Tytun A, Ury HK (1980) A simple approximation for calculating sample sizes for comparing independent proportions. Biometrics 36(2):343–346. https://doi.org/10.2307/2529990

    Article  CAS  PubMed  Google Scholar 

  31. Ogdie A, Yu Y, Haynes K et al (2015) Risk of major cardiovascular events in patients with psoriatic arthritis, psoriasis and rheumatoid arthritis: a population-based cohort study. Ann Rheum Dis 74(2):326–332. https://doi.org/10.1136/annrheumdis-2014-205675

    Article  PubMed  Google Scholar 

  32. Arkema EV, Svenungsson E, Von Euler M et al (2017) Stroke in systemic lupus erythematosus: a Swedish population-based cohort study. Ann Rheum Dis 76(9):1544–1549. https://doi.org/10.1136/annrheumdis-2016-210973

    Article  PubMed  Google Scholar 

  33. Hermansen ML, Lindhardsen J, Torp-Pedersen C et al (2017) The risk of cardiovascular morbidity and cardiovascular mortality in systemic lupus erythematosus and lupus nephritis: a Danish nationwide population-based cohort study. Rheumatology (Oxford) 56(5):709–715. https://doi.org/10.1093/rheumatology/kew475

    Article  Google Scholar 

  34. Balsa A, Lojo-Oliveira L, Alperi-López M et al (2019) Prevalence of comorbidities in rheumatoid arthritis and evaluation of their monitoring in clinical practice: the spanish cohort of the COMORA study. Reumatol Clin 15(2):102–108. https://doi.org/10.1016/j.reuma.2017.06.002

    Article  PubMed  Google Scholar 

  35. Manzi S, Meilahn EN, Rairie JE et al (1997) Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus erythematosus: comparison with the Framingham Study. Am J Epidemiol 145(5):408–415. https://doi.org/10.1093/oxfordjournals.aje.a009122

    Article  CAS  PubMed  Google Scholar 

  36. van den Hoek J, Roorda LD, Boshuizen HC et al (2016) Trend in and predictors for cardiovascular mortality in patients with rheumatoid arthritis over a period of 15 years: a prospective cohort study. Clin Exp Rheumatol 34(5):813–819

    PubMed  Google Scholar 

  37. Agca R, Hopman LHGA, Laan KCJ et al (2019) Cardiovascular event risk in rheumatoid arthritis is higher than in type 2 diabetes: a 15 year longitudinal study. J Rheumatol 47(3):316–324. https://doi.org/10.3899/jrheum.180726

    Article  PubMed  Google Scholar 

  38. van Halm VP, Peters MJL, Voskuyl AE et al (2009) Rheumatoid arthritis versus diabetes as a risk factor for cardiovascular disease: a cross-sectional study, the CARRE Investigation. Ann Rheum Dis 68(9):1395–1400. https://doi.org/10.1136/ard.2008.094151

    Article  PubMed  Google Scholar 

  39. Rueda-Gotor J, Llorca J, Corrales A et al (2018) Cardiovascular risk stratification in axial spondyloarthritis: carotid ultrasound is more sensitive than coronary artery calcification score to detect high-cardiovascular risk axial spondyloarthritis patients. Clin Exp Rheumatol 36(1):73–80

    PubMed  Google Scholar 

  40. Jamthikar AD, Gupta D, Puvvula A et al (2020) Cardiovascular risk assessment in patients with rheumatoid arthritis using carotid ultrasound B-mode imaging. Rheumatol Int 40(12):1921–1939. https://doi.org/10.1007/s00296-020-04691-5

    Article  PubMed  PubMed Central  Google Scholar 

  41. Singh S, Fumery M, Singh AG et al (2020) Comparative risk of cardiovascular events with biologic and synthetic disease-modifying antirheumatic drugs in patients with rheumatoid arthritis: a systematic review and meta-analysis. Arthritis Care Res (Hoboken) 72(4):561–576. https://doi.org/10.1002/acr.23875

    Article  CAS  Google Scholar 

  42. Pylypchuk R, Wells S, Kerr A et al (2018) Cardiovascular disease risk prediction equations in 400 000 primary care patients in New Zealand: a derivation and validation study. Lancet 391(10133):1897–1907. https://doi.org/10.1016/S0140-6736(18)30664-0

    Article  PubMed  Google Scholar 

  43. Branco JC, Rodrigues AM, Gouveia N et al (2016) Prevalence of rheumatic and musculoskeletal diseases and their impact on health-related quality of life, physical function and mental health in Portugal: results from EpiReumaPt– a national health survey. RMD Open 2(1):e000166. https://doi.org/10.1136/rmdopen-2015-000166

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kristman V, Manno M, Côté P (2004) Loss to follow-up in cohort studies: how much is too much? Eur J Epidemiol 19(8):751–760. https://doi.org/10.1023/B:EJEP.0000036568.02655.f8

    Article  PubMed  Google Scholar 

Download references

Funding

The projects that contributed to this database were supported by a grant for clinical research from the Portuguese Society of Rheumatology and a grant from Portuguese Society of Rheumatology/ Pfizer 2017. The funders took no involvement with the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors have no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by VSD, AMR and SSD. The first draft of the manuscript was written by VSD and all authors commented on previous versions of the manuscript. All authors read, approved and take full responsibility for the integrity of the study and the final manuscript.

Corresponding author

Correspondence to Vital Da Silva Domingues.

Ethics declarations

Conflict of interest

Dr. Barkoudah reports research support from National Institutes of Health/National Heart, Lung, and Blood Institute, Bristol Myers Squibb and Janssen, payments made to Brigham and Women’s Hospital for performing clinical endpoints and Advisory Board fees from Bristol Myers Squibb, Janssen, Novartis, Pfizer and Portola, and travel expenses from Alexion; all outside he presented work. No other conflict of interest was identified.

Ethical approval

Approved by NOVA Medical School Ethics Committee and the National Committee for Data Protection.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da Silva Domingues, V., Rodrigues, A.M., Dias, S.S. et al. Increased short-term risk of cardiovascular events in inflammatory rheumatic diseases: results from a population-based cohort. Rheumatol Int 41, 311–318 (2021). https://doi.org/10.1007/s00296-020-04754-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-020-04754-7

Keywords

Navigation