Skip to main content

Advertisement

Log in

Hyperuricemia is associated with decreased renal function and occurrence of end-stage renal disease in patients with microscopic polyangiitis and granulomatosis with polyangiitis: a retrospective study

  • Observational Research
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Current evidence suggests that high uric acid levels are associated with accelerated renal damage. However, the clinical impact of serum uric acid level on patients with microscopic polyangiitis (MPA) and granulomatosis with polyangiitis (GPA) is unknown. We aimed to evaluate the impact of hyperuricemia on such patients. A retrospective study was performed to obtain patients’ demographic, clinical, and laboratory data from when they were diagnosed with MPA and GPA. Multivariable logistic regression and Cox hazard model analyses were performed to evaluate factors associated with hyperuricemia at diagnosis and predictive factors of end-stage renal disease (ESRD) development. Among 156 patients, 35 (22.4%) had hyperuricemia at baseline. Hyperuricemic patients had renal manifestation and impaired renal function more frequently than non-hyperuricemic patients. Logistic regression analysis revealed that serum creatinine was significantly associated with hyperuricemia at diagnosis [odds ratio 1.995; 95% confidence interval (CI), 1.503–2.648; P < 0.001]. Cox hazard model analysis revealed that body mass index and serum creatinine were significantly associated with ESRD when all variables were included, but hyperuricemia was independently associated with ESRD [hazard ratio (HR), 3.799; 95% CI 1.719–8.222; P < 0.001) when serum creatinine was excluded. Additionally, in a subgroup analysis of patients with decreased glomerular filtration rates (GFRs), serum uric acid was the sole predictor of ESRD (HR, 1.243; 95% CI 1.048–1.475; P = 0.013). Hyperuricemia is associated with renal damage and ESRD occurrence in MPA and GPA patients. Serum uric acid level is associated with ESRD occurrence in patients with decreased GFRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jennette JC, Falk RJ, Bacon PA et al (2013) 2012 Revised international chapel hill consensus conference nomenclature of vasculitides. Arthritis Rheum 65:1–11. https://doi.org/10.1002/art.37715

    Article  CAS  PubMed  Google Scholar 

  2. Kallenberg CG (2014) Key advances in the clinical approach to ANCA-associated vasculitis. Nat Rev Rheumatol 10:484–493. https://doi.org/10.1038/nrrheum.2014.104

    Article  CAS  PubMed  Google Scholar 

  3. Schonermarck U, Gross WL, de Groot K (2014) Treatment of ANCA-associated vasculitis. Nat Rev Nephrol 10:25–36. https://doi.org/10.1038/nrneph.2013.225

    Article  CAS  PubMed  Google Scholar 

  4. Rowaiye OO, Kusztal M, Klinger M (2015) The kidneys and ANCA-associated vasculitis: from pathogenesis to diagnosis. Clin Kidney J 8:343–350. https://doi.org/10.1093/ckj/sfv020

    Article  PubMed  PubMed Central  Google Scholar 

  5. Moiseev S, Novikov P, Jayne D, Mukhin N (2017) End-stage renal disease in ANCA-associated vasculitis. Nephrol Dial Transplant 32:248–253. https://doi.org/10.1093/ndt/gfw046

    Article  CAS  PubMed  Google Scholar 

  6. Lieberthal JG, Cuthbertson D, Carette S et al (2013) Urinary biomarkers in relapsing antineutrophil cytoplasmic antibody-associated vasculitis. J Rheumatol 40:674–683. https://doi.org/10.3899/jrheum.120879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen M, Wang F, Zhao MH (2009) Circulating neutrophil gelatinase-associated lipocalin: a useful biomarker for assessing disease activity of ANCA-associated vasculitis. Rheumatology (Oxford) 48:355–358. https://doi.org/10.1093/rheumatology/ken500

    Article  CAS  Google Scholar 

  8. Weidner S, Geuss S, Hafezi-Rachti S, Wonka A, Rupprecht HD (2004) ANCA-associated vasculitis with renal involvement: an outcome analysis. Nephrol Dial Transplant 19:1403–1411. https://doi.org/10.1093/ndt/gfh161

    Article  PubMed  Google Scholar 

  9. Ejaz AA, Mu W, Kang DH et al (2007) (2007) Could uric acid have a role in acute renal failure? Clin J Am Soc Nephrol 2:16–21. https://doi.org/10.2215/cjn.00350106

    Article  CAS  PubMed  Google Scholar 

  10. Sanchez-Lozada LG, Tapia E, Santamaria J, Avila-Casado C, Soto V, Nepomuceno T, Rodriguez-Iturbe B, Johnson RJ, Herrera-Acosta J (2005) Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney Int 67:237–247. https://doi.org/10.1111/j.1523-1755.2005.00074.x

    Article  PubMed  Google Scholar 

  11. Roncal CA, Mu W, Croker B, Reungjui S, Ouyang X, Tabah-Fisch I, Johnson RJ, Ejaz AA (2007) Effect of elevated serum uric acid on cisplatin-induced acute renal failure. Am J Physiol Renal Physiol 292:F116–122. https://doi.org/10.1152/ajprenal.00160.2006

    Article  CAS  PubMed  Google Scholar 

  12. Calich AL, Borba EF, Ugolini-Lopes MR, da Rocha LF, Bonfa E, Fuller R (2018) Serum uric acid levels are associated with lupus nephritis in patients with normal renal function. Clin Rheumatol 37:1223–1228. https://doi.org/10.1007/s10067-018-3991-8

    Article  PubMed  Google Scholar 

  13. Daoussis D, Panoulas V, Toms T, John H, Antonopoulos I, Nightingale P, Douglas KM, Klocke R, Kitas GD (2009) Uric acid is a strong independent predictor of renal dysfunction in patients with rheumatoid arthritis. Arthritis Res Ther 11:R116. https://doi.org/10.1186/ar2775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu KH, Kuo CF, Luo SF, See LC, Chou IJ, Chang HC, Chiou MJ (2012) Risk of end-stage renal disease associated with gout: a nationwide population study. Arthritis Res Ther 14:R83. https://doi.org/10.1186/ar3806

    Article  PubMed  PubMed Central  Google Scholar 

  15. Richette P, Doherty M, Pascual E et al (2017) 2016 updated EULAR evidence-based recommendations for the management of gout. Ann Rheum Dis 76:29–42. https://doi.org/10.1136/annrheumdis-2016-209707

    Article  CAS  PubMed  Google Scholar 

  16. Watts R, Lane S, Hanslik T, Hauser T, Hellmich B, Koldingsnes W, Mahr A, Segelmark M, Cohen-Tervaert JW, Scott D (2007) Development and validation of a consensus methodology for the classification of the ANCA-associated vasculitides and polyarteritis nodosa for epidemiological studies. Ann Rheum Dis 66:222–227. https://doi.org/10.1136/ard.2006.054593

    Article  PubMed  Google Scholar 

  17. Leavitt RY, Fauci AS, Bloch DA et al (1990) The American College of Rheumatology 1990 criteria for the classification of Wegener's granulomatosis. Arthritis Rheum 33:1101–1107. https://doi.org/10.1002/art.1780330807

    Article  CAS  PubMed  Google Scholar 

  18. Mukhtyar C, Lee R, Brown D et al (2009) Modification and validation of the Birmingham vasculitis activity score (version 3). Ann Rheum Dis 68:1827–1832. https://doi.org/10.1136/ard.2008.101279

    Article  CAS  PubMed  Google Scholar 

  19. Guillevin L, Pagnoux C, Seror R, Mahr A, Mouthon L, Le Toumelin P (2011) The five-factor score revisited: assessment of prognoses of systemic necrotizing vasculitides based on the French Vasculitis Study Group (FVSG) cohort. Medicine (Baltimore) 90:19–27. https://doi.org/10.1097/MD.0b013e318205a4c6

    Article  Google Scholar 

  20. Stone JH, Hoffman GS, Merkel PA et al (2001) A disease-specific activity index for Wegener's granulomatosis: modification of the Birmingham Vasculitis Activity Score International Network for the Study of the Systemic Vasculitides (INSSYS). Arthritis Rheum 44:912–920. https://doi.org/10.1002/1529-0131(200104)44:4%3c912::Aid-anr148%3e3.0.Co;2-5

    Article  CAS  Google Scholar 

  21. Bossuyt X, Cohen Tervaert JW, Arimura Y et al (2017) Position paper: revised 2017 international consensus on testing of ANCAs in granulomatosis with polyangiitis and microscopic polyangiitis. Nat Rev Rheumatol 13:683–692. https://doi.org/10.1038/nrrheum.2017.140

    Article  PubMed  Google Scholar 

  22. Jin M, Yang F, Yang I, Yin Y, Luo JJ, Wang H, Yang XF (2012) Uric acid, hyperuricemia and vascular diseases. Front Biosci (Landmark Ed) 17:656–669

    Article  CAS  Google Scholar 

  23. (2013) Chapter 1: Definition and classification of CKD. Kidney Int Suppl (2011) 2013;3:19–62. https://doi.org/10.1038/kisup.2012.64

  24. Mukhtyar C, Hellmich B, Jayne D, Flossmann O, Luqmani R (2006) Remission in antineutrophil cytoplasmic antibody-associated systemic vasculitis. Clin Exp Rheumatol 24:93–98

    Google Scholar 

  25. Iseki K, Ikemiya Y, Inoue T, Iseki C, Kinjo K, Takishita S (2004) Significance of hyperuricemia as a risk factor for developing ESRD in a screened cohort. Am J Kidney Dis 44:642–650

    Article  PubMed  Google Scholar 

  26. Iseki K (2018) Significance of hyperuricemia among community-based screening participants. Contrib Nephrol 192:41–47. https://doi.org/10.1159/000484277

    Article  PubMed  Google Scholar 

  27. Benn CL, Dua P, Gurrell R, Loudon P, Pike A, Storer RI, Vangjeli C (2018) Physiology of hyperuricemia and urate-lowering treatments. Front Med (Lausanne) 5:160. https://doi.org/10.3389/fmed.2018.00160

    Article  Google Scholar 

  28. Oh TR, Choi HS, Kim CS, Bae EH, Ma SK, Sung SA, Kim YS, Oh KH, Ahn C, Kim SW (2019) Hyperuricemia has increased the risk of progression of chronic kidney disease: propensity score matching analysis from the KNOW-CKD study. Sci Rep 9:6681. https://doi.org/10.1038/s41598-019-43241-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jennette JC, Falk RJ, Hu P, Xiao H (2013) Pathogenesis of antineutrophil cytoplasmic autoantibody-associated small-vessel vasculitis. Annu Rev Pathol 8:139–160. https://doi.org/10.1146/annurev-pathol-011811-132453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jennette JC, Falk RJ (2014) Pathogenesis of antineutrophil cytoplasmic autoantibody-mediated disease. Nat Rev Rheumatol 10:463–473. https://doi.org/10.1038/nrrheum.2014.103

    Article  CAS  PubMed  Google Scholar 

  31. Gibson TJ (2013) Hypertension, its treatment, hyperuricaemia and gout. Curr Opin Rheumatol 25:217–222. https://doi.org/10.1097/BOR.0b013e32835cedd4

    Article  CAS  PubMed  Google Scholar 

  32. McAdams-DeMarco MA, Maynard JW, Baer AN, Coresh J (2012) Hypertension and the risk of incident gout in a population-based study: the atherosclerosis risk in communities cohort. J Clin Hypertens (Greenwich) 14:675–679. https://doi.org/10.1111/j.1751-7176.2012.00674.x

    Article  Google Scholar 

  33. Li C, Hsieh MC, Chang SJ (2013) Metabolic syndrome, diabetes, and hyperuricemia. Curr Opin Rheumatol 25:210–216. https://doi.org/10.1097/BOR.0b013e32835d951e

    Article  CAS  PubMed  Google Scholar 

  34. Kanbay M, Segal M, Afsar B, Kang DH, Rodriguez-Iturbe B, Johnson RJ (2013) The role of uric acid in the pathogenesis of human cardiovascular disease. Heart 99:759–766. https://doi.org/10.1136/heartjnl-2012-302535

    Article  CAS  PubMed  Google Scholar 

  35. Kleber ME, Delgado G, Grammer TB, Silbernagel G, Huang J, Kramer BK, Ritz E, Marz W (2015) Uric acid and cardiovascular events: a mendelian randomization study. J Am Soc Nephrol 26:2831–2838. https://doi.org/10.1681/asn.2014070660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Albert D, Scudder PN, Bagley P, Saag KG (2019) Vascular consequences of hyperuricemia and hypouricemia. Rheum Dis Clin North Am 45:453–464. https://doi.org/10.1016/j.rdc.2019.04.005

    Article  PubMed  Google Scholar 

  37. Yun HR, Kim H, Park JT et al (2018) Obesity, metabolic abnormality, and progression of CKD. Am J Kidney Dis 72:400–410. https://doi.org/10.1053/j.ajkd.2018.02.362

    Article  CAS  PubMed  Google Scholar 

  38. Kim H, Kim J, Seo C et al (2017) Body mass index is inversely associated with mortality in patients with acute kidney injury undergoing continuous renal replacement therapy. Kidney Res Clin Pract 36:39–47. https://doi.org/10.23876/j.krcp.2017.36.1.39

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lu JL, Kalantar-Zadeh K, Ma JZ, Quarles LD, Kovesdy CP (2014) Association of body mass index with outcomes in patients with CKD. J Am Soc Nephrol 25:2088–2096. https://doi.org/10.1681/asn.2013070754

    Article  PubMed  PubMed Central  Google Scholar 

  40. Babitt JL, Lin HY (2012) Mechanisms of anemia in CKD. J Am Soc Nephrol 23:1631–1634. https://doi.org/10.1681/asn.2011111078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported for English editing service from Editage.

Funding

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) and funded by the Ministry of Education (2017R1D1A1B03029050) and a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute, funded by the Ministry of Health and Welfare, Republic of Korea (HI14C1324).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HCK, SSA and SWL. Data curation: SSA, BWY and JY. Formal analysis: JY and SMJ. Methodology: SSA, JJS and SWL. Project administration: HCK and SSA. Supervision: YBP and SWL. Writing—original draft: HCK and SWL. Writing—review and editing: SSA, BWY, JY, SMJ, JJS, YBP and SWL. All authors take full responsibility for the integrity of the study and final manuscript.

Corresponding author

Correspondence to Sang-Won Lee.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethics approval

This study was performed in accordance with the principles set by the Declaration of Helsinki, and was approved by the Institutional Review Board (IRB) of Severance Hospital (IRB number: 4-2017-0673).

Data and/or Code availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 kb)

Supplementary file1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, H.C., Ahn, S.S., Yoo, BW. et al. Hyperuricemia is associated with decreased renal function and occurrence of end-stage renal disease in patients with microscopic polyangiitis and granulomatosis with polyangiitis: a retrospective study. Rheumatol Int 40, 1089–1099 (2020). https://doi.org/10.1007/s00296-020-04579-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-020-04579-4

Keywords

Navigation