Skip to main content

Advertisement

Log in

A review of the role and clinical utility of anti-Ro52/TRIM21 in systemic autoimmunity

  • Biomarkers
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Anti-Ro52/tripartite motif-containing 21 (TRIM21) is a ubiquitous antibody found in a number of systemic autoimmune conditions including Sjögren’s syndrome, systemic lupus erythematosus and systemic sclerosis, appearing in about half of these patients. Once coupled with its closely related antibody, anti-Ro60 as the anti-SSA antibody, anti-Ro52 is emerging as a unique antibody with direct pathogenic disease involvement and distinct clinical properties. As a result, recent attention has turned to this antibody and its clinical associations and utility. There is a suggestion of anti-Ro52 being associated with more clinical and laboratory markers of disease; however, marked disagreements occur about its association with various clinical entities such as interstitial lung disease and Raynaud’s phenomena. Nevertheless, with a relative paucity of studies about these across the systemic autoimmunity paradigm, limited confidence can be invested in these conclusions. Although the antibody holds great potential as a biomarker, further studies examining its clinical utility are needed. This paper will review the mechanisms of Ro52 as an autoantigen and the clinical associations of anti-Ro52 in human autoimmunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Chetrit E, Chan EKL, Sullivan KF, Tan EM (1988) A 52-kD protein is a novel component of the SS-A/Ro antigenic particle. J Exp Med 167(5):1560–1571

    Article  CAS  PubMed  Google Scholar 

  2. Schulte-Pelkum J, Fritzler M, Mahler M (2009) Latest update on the Ro/SS-A autoantibody system. Autoimmun Rev 8(7):632–637. doi:10.1016/j.autrev.2009.02.010

    Article  CAS  PubMed  Google Scholar 

  3. Oke V, Wahren-Herlenius M (2012) The immunobiology of Ro52 (TRIM21) in autoimmunity: a critical review. J Autoimmun 39(1–2):77–82. doi:10.1016/j.jaut.2012.01.014

    Article  CAS  PubMed  Google Scholar 

  4. Kong HJ, Anderson DE, Lee CH, Jang MK, Tamura T, Tailor P, Cho HK, Cheong J, Xiong H, Morse HC 3rd, Ozato K (2007) Cutting edge: autoantigen Ro52 is an interferon inducible E3 ligase that ubiquitinates IRF-8 and enhances cytokine expression in macrophages. J Immunol 179(1):26–30

    Article  CAS  PubMed  Google Scholar 

  5. Higgs R, Lazzari E, Wynne C, Ni Gabhann J, Espinosa A, Wahren-Herlenius M, Jefferies CA (2010) Self protection from anti-viral responses–Ro52 promotes degradation of the transcription factor IRF7 downstream of the viral Toll-Like receptors. PLoS One 5(7):e11776. doi:10.1371/journal.pone.0011776

    Article  PubMed  PubMed Central  Google Scholar 

  6. Higgs R, Ni Gabhann J, Ben Larbi N, Breen EP, Fitzgerald KA, Jefferies CA (2008) The E3 ubiquitin ligase Ro52 negatively regulates IFN-beta production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3. J Immunol 181(3):1780–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Espinosa A, Dardalhon V, Brauner S, Ambrosi A, Higgs R, Quintana FJ, Sjostrand M, Eloranta ML, Ni Gabhann J, Winqvist O, Sundelin B, Jefferies CA, Rozell B, Kuchroo VK, Wahren-Herlenius M (2009) Loss of the lupus autoantigen Ro52/Trim21 induces tissue inflammation and systemic autoimmunity by disregulating the IL-23-Th17 pathway. J Exp Med 206(8):1661–1671. doi:10.1084/jem.20090585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jauharoh SN, Saegusa J, Sugimoto T, Ardianto B, Kasagi S, Sugiyama D, Kurimoto C, Tokuno O, Nakamachi Y, Kumagai S, Kawano S (2012) SS-A/Ro52 promotes apoptosis by regulating Bcl-2 production. Biochem Biophys Res Commun 417(1):582–587. doi:10.1016/j.bbrc.2011.12.010

    Article  CAS  PubMed  Google Scholar 

  9. McEwan WA, Tam JCH, Watkinson RE, Bidgood SR, Mallery DL, James LC (2013) Intracellular antibody-bound pathogens stimulate immune signaling via Fc-receptor TRIM21. Nat Immunol 14(4):327–336. doi:10.1038/ni.2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Foss S, Watkinson R, Sandlie I, James LC, Andersen JT (2015) TRIM21: a cytosolic Fc receptor with broad antibody isotype specificity. Immunol Rev 268(1):328–339. doi:10.1111/imr.12363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pan JA, Sun Y, Jiang YP, Bott AJ, Jaber N, Dou Z, Yang B, Chen JS, Catanzaro JM, Du C, Ding WX, Diaz-Meco MT, Moscat J, Ozato K, Lin RZ, Zong WX (2016) TRIM21 ubiquitylates SQSTM1/p62 and suppresses protein sequestration to regulate redox homeostasis. Mol Cell 61(5):720–733. doi:10.1016/j.molcel.2016.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reed JH, Gorny MK, Li L, Cardozo T, Buyon JP, Clancy RM (2017) Ro52 autoantibodies arise from self-reactive progenitors in a mother of a child with neonatal lupus. J Autoimmun. doi:10.1016/j.jaut.2017.01.004 (In press)

    PubMed  Google Scholar 

  13. Strandberg L, Ambrosi A, Espinosa A, Ottosson L, Eloranta ML, Zhou W, Elfving A, Greenfield E, Kuchroo VK, Wahren-Herlenius M (2008) Interferon-alpha induces up-regulation and nuclear translocation of the Ro52 autoantigen as detected by a panel of novel Ro52-specific monoclonal antibodies. J Clin Immunol 28(3):220–231. doi:10.1007/s10875-007-9157-0

    Article  CAS  PubMed  Google Scholar 

  14. Oke V, Vassilaki I, Espinosa A, Strandberg L, Kuchroo VK, Nyberg F, Wahren-Herlenius M (2009) High Ro52 expression in spontaneous and UV-induced cutaneous inflammation. J Invest Dermatol 129(8):2000–2010. doi:10.1038/jid.2008.453

    Article  CAS  PubMed  Google Scholar 

  15. Saegusa J, Kawano S, Koshiba M, Hayashi N, Kosaka H, Funasaka Y, Kumagai S (2002) Oxidative stress mediates cell surface expression of SS-A/Ro antigen on keratinocytes. Free Radic Biol Med 32(10):1006–1016

    Article  CAS  PubMed  Google Scholar 

  16. Ohlsson M, Jonsson R, Brokstad KA (2002) Subcellular redistribution and surface exposure of the Ro52, Ro60 and La48 autoantigens during apoptosis in human ductal epithelial cells: a possible mechanism in the pathogenesis of Sjogren’s syndrome. Scand J Immunol 56(5):456–469

    Article  CAS  PubMed  Google Scholar 

  17. Igarashi T, Itoh Y, Fukunaga Y, Yamamoto M (1995) Stress-induced cell surface expression and antigenic alteration of the Ro/SSA autoantigen. Autoimmunity 22(1):33–42

    Article  CAS  PubMed  Google Scholar 

  18. Miranda-Carús M-E, Askanase AD, Clancy RM, Di Donato F, Chou T-M, Libera MR, Chan EKL, Buyon JP (2000) Anti-SSA/Ro and anti-SSB/La autoantibodies bind the surface of apoptotic fetal cardiocytes and promote secretion of TNF-α by macrophages. J Immunol 165(9):5345–5351. doi:10.4049/jimmunol.165.9.5345

    Article  PubMed  Google Scholar 

  19. Monteith AJ, Kang S, Scott E, Hillman K, Rajfur Z, Jacobson K, Costello MJ, Vilen BJ (2016) Defects in lysosomal maturation facilitate the activation of innate sensors in systemic lupus erythematosus. Proc Natl Acad Sci USA 113(15):E2142–E2151. doi:10.1073/pnas.1513943113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Szczerba BM, Kaplonek P, Wolska N, Podsiadlowska A, Rybakowska PD, Dey P, Rasmussen A, Grundahl K, Hefner KS, Stone DU, Young S, Lewis DM, Radfar L, Scofield RH, Sivils KL, Bagavant H, Deshmukh US (2015) Interaction between innate immunity and Ro52-induced antibody causes Sjögren’s syndrome-like disorder in mice. Ann Rheum Dis. doi:10.1136/annrheumdis-2014-206297

    PubMed  PubMed Central  Google Scholar 

  21. Aqrawi LA, Kvarnstrom M, Brokstad KA, Jonsson R, Skarstein K, Wahren-Herlenius M (2014) Ductal epithelial expression of Ro52 correlates with inflammation in salivary glands of patients with primary Sjogren’s syndrome. Clin Exp Immunol 177(1):244–252. doi:10.1111/cei.12341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aqrawi LA, Skarstein K, Oijordsbakken G, Brokstad KA (2013) Ro52- and Ro60-specific B cell pattern in the salivary glands of patients with primary Sjogren’s syndrome. Clin Exp Immunol 172(2):228–237. doi:10.1111/cei.12058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Salomonsson S, Dzikaite V, Zeffer E, Eliasson H, Ambrosi A, Bergman G, Fernlund E, Theander E, Ohman A, Rydberg A, Skogh T, Wallberg-Jonsson S, Elfving A, Fored M, Ekbom A, Lundstrom U, Mellander M, Winqvist O, Sonesson SE, Gadler F, Jonzon A, Wahren-Herlenius M (2011) A population-based investigation of the autoantibody profile in mothers of children with atrioventricular block. Scand J Immunol 74(5):511–517. doi:10.1111/j.1365-3083.2011.02610.x

    Article  CAS  PubMed  Google Scholar 

  24. Salomonsson S, Sonesson SE, Ottosson L, Muhallab S, Olsson T, Sunnerhagen M, Kuchroo VK, Thoren P, Herlenius E, Wahren-Herlenius M (2005) Ro/SSA autoantibodies directly bind cardiomyocytes, disturb calcium homeostasis, and mediate congenital heart block. J Exp Med 201(1):11–17. doi:10.1084/jem.20041859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eftekhari P, Sallé L, Lezoualc’h F, Mialet J, Gastineau M, Briand J-P, Isenberg DA, Fournié GJ, Argibay J, Fischmeister R, Muller S, Hoebeke J (2000) Anti-SSA/Ro52 autoantibodies blocking the cardiac 5-HT4 serotoninergic receptor could explain neonatal lupus congenital heart block. Eur J Immunol 30(10):2782–2790. doi:10.1002/1521-4141(200010)30:10<2782:AID-IMMU2782>3.0.CO;2-9

    Article  CAS  PubMed  Google Scholar 

  26. Ambrosi A, Dzikaite V, Park J, Strandberg L, Kuchroo VK, Herlenius E, Wahren-Herlenius M (2012) Anti-Ro52 monoclonal antibodies specific for amino acid 200–239, but not other Ro52 epitopes, induce congenital heart block in a rat model. Ann Rheum Dis 71(3):448–454. doi:10.1136/annrheumdis-2011-200414

    Article  CAS  PubMed  Google Scholar 

  27. Clancy RM, Kapur RP, Molad Y, Askanase AD, Buyon JP (2004) Immunohistologic evidence supports apoptosis, IgG deposition, and novel macrophage/fibroblast crosstalk in the pathologic cascade leading to congenital heart block. Arthr Rheum 50(1):173–182. doi:10.1002/art.11430

    Article  CAS  Google Scholar 

  28. Damoiseaux J, Boesten K, Giesen J, Austen J, Tervaert JW (2005) Evaluation of a novel line-blot immunoassay for the detection of antibodies to extractable nuclear antigens. Ann N Y Acad Sci 1050:340–347. doi:10.1196/annals.1313.036

    Article  CAS  PubMed  Google Scholar 

  29. Peene I, Meheus L, De Keyser S, Humbel R, Veys EM, De Keyser F (2002) Anti-Ro52 reactivity is an independent and additional serum marker in connective tissue disease. Ann Rheum Dis 61(10):929–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee SA, Kahng J, Kim Y, Park YJ, Han K, Kwok SK, Park SH, Oh EJ (2012) Comparative study of immunofluorescent antinuclear antibody test and line immunoassay detecting 15 specific autoantibodies in patients with systemic rheumatic disease. J Clin Lab Anal 26(4):307–314. doi:10.1002/jcla.21522

    Article  PubMed  Google Scholar 

  31. Menor Almagro R, Jurado Roger A, Rodriguez Gutierrez FJ, Solis Diaz R, Cardiel MH, Salaberri Maestrojuan JJ (2015) Association of anti-Ro52, anti-Ro60 and anti-La antibodies with diagnostic, clinical and laboratory features in a referral hospital in Jerez. Reumatol Clin, Spain. doi:10.1016/j.reuma.2015.10.010

    Google Scholar 

  32. Gonzalez DA, Rodriguez CC, Armas LM, Varela AR, Rodriguez IM, Duarte MT, de Leon AC (2014) Anti-ENA profiles related with anti-SS-A/Ro. The detection of Ro52 and Ro60 according to the presence of SS-B/La, and ANA pattern and titer. Immunol Lett 161(1):6–12. doi:10.1016/j.imlet.2014.04.009

    Article  CAS  PubMed  Google Scholar 

  33. Yang Y-S, Eversole T, Lee DJ, Sontheimer RD, Capra JD (1999) Protein–protein interactions between native Ro52 and immunoglobulin G heavy chain. Scand J Immunol 49(6):620–628

    Article  CAS  PubMed  Google Scholar 

  34. Menendez A, Gomez J, Escanlar E, Caminal-Montero L, Mozo L (2013) Clinical associations of anti-SSA/Ro60 and anti-Ro52/TRIM21 antibodies: diagnostic utility of their separate detection. Autoimmunity 46(1):32–39. doi:10.3109/08916934.2012.732131

    Article  CAS  PubMed  Google Scholar 

  35. Ching KH, Burbelo PD, Gonzalez-Begne M, Roberts ME, Coca A, Sanz I, Iadarola MJ (2011) Salivary anti-Ro60 and anti-Ro52 antibody profiles to diagnose Sjogren’s syndrome. J Dent Res 90(4):445–449. doi:10.1177/0022034510390811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dugar M, Cox S, Limaye V, Gordon TP, Roberts-Thomson PJ (2010) Diagnostic utility of anti-Ro52 detection in systemic autoimmunity. Postgrad Med J 86(1012):79–82. doi:10.1136/pgmj.2009.089656

    Article  PubMed  Google Scholar 

  37. Gál I, Lakos G, Zeher M (2000) Comparison of the anti-Ro/SSA autoantibody profile between patients with primary and secondary Sjogren’s syndrome. Autoimmunity 32(2):89–92

    Article  PubMed  Google Scholar 

  38. Retamozo S, Akasbi M, Brito-Zeron P, Bosch X, Bove A, Perez-de-Lis M, Jimenez I, Soto-Cardenas MJ, Gandia M, Diaz-Lagares C, Vinas O, Siso A, Perez-Alvarez R, Yague J, Ramos-Casals M (2012) Anti-Ro52 antibody testing influences the classification and clinical characterisation of primary Sjogren’s syndrome. Clin Exp Rheumatol 30(5):686–692

    PubMed  Google Scholar 

  39. Song JS, Do JH, Lee SW (2012) The prevalence and the clinical relevance of anti-Ro52 in Korean patients with primary Sjogren’s syndrome. Rheumatol Int 32(2):491–495. doi:10.1007/s00296-010-1790-x

    Article  CAS  PubMed  Google Scholar 

  40. Menendez A, Gomez J, Caminal-Montero L, Diaz-Lopez JB, Cabezas-Rodriguez I, Mozo L (2013) Common and specific associations of anti-SSA/Ro60 and anti-Ro52/TRIM21 antibodies in systemic lupus erythematosus. Sci World J 2013:832789. doi:10.1155/2013/832789

    Article  Google Scholar 

  41. Hudson M, Pope J, Mahler M, Tatibouet S, Steele R, Baron M, Fritzler MJ (2012) Clinical significance of antibodies to Ro52/TRIM21 in systemic sclerosis. Arthr Res Ther 14(2):R50. doi:10.1186/ar3763

    Article  CAS  Google Scholar 

  42. Gourzi VC, Kapsogeorgou EK, Kyriakidis NC, Tzioufas AG (2015) Study of microRNAs (miRNAs) that are predicted to target the autoantigens Ro/SSA and La/SSB in primary Sjogren’s syndrome. Clin Exp Immunol 182(1):14–22. doi:10.1111/cei.12664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nakken B, Jonsson R, Brokstad KA, Omholt K, Nerland AH, Haga HJ, Halse AK (2001) Associations of MHC class II alleles in Norwegian primary Sjogren’s syndrome patients: implications for development of autoantibodies to the Ro52 autoantigen. Scand J Immunol 54(4):428–433

    Article  CAS  PubMed  Google Scholar 

  44. Jonsson R, Theander E, Sjostrom B, Brokstad K, Henriksson G (2013) Autoantibodies present before symptom onset in primary Sjogren syndrome. JAMA 310(17):1854–1855. doi:10.1001/jama.2013.278448

    Article  CAS  PubMed  Google Scholar 

  45. Ching KH, Burbelo PD, Tipton C, Wei C, Petri M, Sanz I, Iadarola MJ (2012) Two major autoantibody clusters in systemic lupus erythematosus. PLoS One 7(2):e32001. doi:10.1371/journal.pone.0032001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kvarnstrom M, Dzikaite-Ottosson V, Ottosson L, Gustafsson JT, Gunnarsson I, Svenungsson E, Wahren-Herlenius M (2013) Autoantibodies to the functionally active RING-domain of Ro52/SSA are associated with disease activity in patients with lupus. Lupus 22(5):477–485. doi:10.1177/0961203313479420

    Article  CAS  PubMed  Google Scholar 

  47. Su YJ, Cheng TT, Chen CJ, Chiu WC, Hsu CY, Chang WN, Tsai NW, Kung CT, Wang HC, Lin WC, Huang CC, Chang YT, Su CM, Chiang YF, Cheng BC, Lin YJ, Lu CH (2013) The association among leukocyte apoptosis, autoantibodies and disease severity in systemic lupus erythematosus. J Transl Med 11:261. doi:10.1186/1479-5876-11-261

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tangri V, Hewson C, Baron M, Bonner A, Fritzler M, Pope JE (2013) Associations with organ involvement and autoantibodies in systemic sclerosis: results from the Canadian Scleroderma Research Group (CSRG). Open J Rheumatol Autoimmune Dis 3:113–118. doi:10.4236/ojra.2013.32017

    Article  Google Scholar 

  49. Fujimoto M, Shimozuma M, Yazawa N, Kubo M, Ihn H, Sato S, Tamaki T, Kikuchi K, Tamaki K (1997) Prevalence and clinical relevance of 52-kDa and 60-kDa Ro/SS-A autoantibodies in Japanese patients with systemic sclerosis. Ann Rheum Dis 56(11):667–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Massie C, Hudson M, Tatibouet S, Steele R, Huynh T, Fritzler MJ, Baron M, Pineau CA (2014) Absence of an association between anti-Ro antibodies and prolonged QTc interval in systemic sclerosis: a multicenter study of 689 patients. Semin Arthr Rheum 44(3):338–344. doi:10.1016/j.semarthrit.2014.07.001

    Article  CAS  Google Scholar 

  51. Mehra S, Hudson M, Mahler M, Baron M, Fritzler M (2014) Is there an association between Ro52/TRIM21 antibodies and rheumatoid factor in systemic sclerosis? Rheumatol Int 34(3):425–427. doi:10.1007/s00296-013-2728-x

    Article  PubMed  Google Scholar 

  52. Sanchez-Montalva A, Fernandez-Luque A, Simeon CP, Fonollosa-Pla V, Marin A, Guillen A, Vilardell M (2014) Anti-SSA/Ro52 autoantibodies in scleroderma: results of an observational, cross-sectional study. Clin Exp Rheumatol 32(6 Suppl 86):177–182

    Google Scholar 

  53. Wodkowski M, Hudson M, Proudman S, Walker J, Stevens W, Nikpour M, Assassi S, Mayes MD, Wang M, Baron M, Fritzler MJ (2015) Monospecific anti-Ro52/TRIM21 antibodies in a tri-nation cohort of 1574 systemic sclerosis subjects: evidence of an association with interstitial lung disease and worse survival. Clin Exp Rheumatol 33(4 Suppl 91):S131–S135

    PubMed  Google Scholar 

  54. Parker JC, Burlingame RW, Bunn CC (2009) Prevalence of antibodies to Ro-52 in a serologically defined population of patients with systemic sclerosis. J Autoimmune Dis 6:2. doi:10.1186/1740-2557-6-2

    Article  PubMed  PubMed Central  Google Scholar 

  55. Patterson KA, Roberts-Thomson PJ, Lester S, Tan JA, Hakendorf P, Rischmueller M, Zochling J, Sahhar J, Nash P, Roddy J, Hill C, Nikpour M, Stevens W, Proudman SM, Walker JG (2015) Interpretation of an extended autoantibody profile in a well-characterized Australian systemic sclerosis (scleroderma) cohort using principal components analysis. Arthr Rheumatol 67(12):3234–3244. doi:10.1002/art.39316

    Article  CAS  Google Scholar 

  56. Ferreira JP, Almeida I, Marinho A, Cerveira C, Vasconcelos C (2012) Are anti-Ro52 antibodies associated with pulmonary involvement in scleroderma? J Pulmonar Respirat Med 2:116

    Google Scholar 

  57. Bussone G, Mouthon L (2011) Interstitial lung disease in systemic sclerosis. Autoimmun Rev 10(5):248–255. doi:10.1016/j.autrev.2010.09.012

    Article  PubMed  Google Scholar 

  58. Nakashima R, Mimori T (2010) Clinical and pathophysiological significance of myositis-specific and myositis-associated autoantibodies. Int J Clin Rheumatol 5(5):523–536. doi:10.2217/IJR.10.48

    Article  CAS  Google Scholar 

  59. Cruellas MGP, dos Santos Trindade Viana V, Levy-Neto M, de Souza FHC, Shinjo SK (2013) Myositis-specific and myositis-associated autoantibody profiles and their clinical associations in a large series of patients with polymyositis and dermatomyositis. Clinics 68(7):909–914. doi:10.6061/clinics/2013(07)04

    Article  PubMed  PubMed Central  Google Scholar 

  60. Brouwer R, Hengstman GJ, Vree Egberts W, Ehrfeld H, Bozic B, Ghirardello A, Grondal G, Hietarinta M, Isenberg D, Kalden JR, Lundberg I, Moutsopoulos H, Roux-Lombard P, Vencovsky J, Wikman A, Seelig HP, van Engelen BG, van Venrooij WJ (2001) Autoantibody profiles in the sera of European patients with myositis. Ann Rheum Dis 60(2):116–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ferreira JP, Almeida I, Marinho A, Cerveira C, Vasconcelos C (2012) Anti-ro52 antibodies and interstitial lung disease in connective tissue diseases excluding scleroderma. ISRN Rheumatol 2012:415272. doi:10.5402/2012/415272

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kubo M, Ihn H, Asano Y, Yamane K, Yazawa N, Tamaki K (2002) Prevalence of 52-kd and 60-kd Ro/SS-A autoantibodies in Japanese patients with polymyositis/dermatomyositis. J Am Acad Dermatol 47(1):148–151

    Article  PubMed  Google Scholar 

  63. Marie I, Hatron PY, Dominique S, Cherin P, Mouthon L, Menard JF, Levesque H, Jouen F (2012) Short-term and long-term outcome of anti-Jo1-positive patients with anti-Ro52 antibody. Semin Arthr Rheum 41(6):890–899. doi:10.1016/j.semarthrit.2011.09.008

    Article  CAS  Google Scholar 

  64. Rozman B, Bozic B, Kos-Golja M, Plesivcnik-Novljan M, Kveder T (2000) Immunoserological aspects of idiopathic inflammatory muscle disease. Wien Klin Wochenschr 112(15–16):722–727

    CAS  PubMed  Google Scholar 

  65. Rutjes SA, Vree Egberts WT, Jongen P, Van Den Hoogen F, Pruijn GJ, Van Venrooij WJ (1997) Anti-Ro52 antibodies frequently co-occur with anti-Jo-1 antibodies in sera from patients with idiopathic inflammatory myopathy. Clin Exp Immunol 109(1):32–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Selva-O’Callaghan A, Labrador-Horrillo M, Solans-Laque R, Simeon-Aznar CP, Martinez-Gomez X, Vilardell-Tarres M (2006) Myositis-specific and myositis-associated antibodies in a series of eighty-eight Mediterranean patients with idiopathic inflammatory myopathy. Arthr Rheum 55(5):791–798. doi:10.1002/art.22237

    Article  Google Scholar 

  67. Srivastava P, Dwivedi S, Misra R (2016) Myositis-specific and myositis-associated autoantibodies in Indian patients with inflammatory myositis. Rheumatol Int. doi:10.1007/s00296-016-3494-3

    Google Scholar 

  68. Frank MB, McCubbin V, Trieu E, Wu Y, Isenberg DA, Targoff IN (1999) The association of anti-Ro52 autoantibodies with myositis and scleroderma autoantibodies. J Autoimmun 12(2):137–142. doi:10.1006/jaut.1998.0265

    Article  CAS  PubMed  Google Scholar 

  69. Venables PJW (1997) Antibodies to Jo-1 and Ro-52: why do they go together? Clin Exp Immunol 109(3):403–405. doi:10.1046/j.1365-2249.1997.4761369.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vancsa A, Csipo I, Nemeth J, Devenyi K, Gergely L, Danko K (2009) Characteristics of interstitial lung disease in SS-A positive/Jo-1 positive inflammatory myopathy patients. Rheumatol Int 29(9):989–994. doi:10.1007/s00296-009-0884-9

    Article  CAS  PubMed  Google Scholar 

  71. La Corte R, Lo Mo Naco A, Locaputo A, Dolzani F, Trotta F (2006) In patients with antisynthetase syndrome the occurrence of anti-Ro/SSA antibodies causes a more severe interstitial lung disease. Autoimmunity 39(3):249–253. doi:10.1080/08916930600623791

    Article  PubMed  Google Scholar 

  72. Chinoy H, Salway F, Fertig N, Shephard N, Tait BD, Thomson W, Isenberg DA, Oddis CV, Silman AJ, Ollier WE, Cooper RG (2006) In adult onset myositis, the presence of interstitial lung disease and myositis specific/associated antibodies are governed by HLA class II haplotype, rather than by myositis subtype. Arthr Res Ther 8(1):R13. doi:10.1186/ar1862

    Article  Google Scholar 

  73. Li BA, Liu J, Hou J, Tang J, Zhang J, Xu J, Song YJ, Liu AX, Zhao J, Guo JX, Chen L, Wang H, Yang LH, Lu J, Mao YL (2015) Autoantibodies in Chinese patients with chronic hepatitis B: prevalence and clinical associations. World J Gastroenterol 21(1):283–291. doi:10.3748/wjg.v21.i1.283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Montano-Loza AJ, Shums Z, Norman GL, Czaja AJ (2012) Prognostic implications of antibodies to Ro/SSA and soluble liver antigen in type 1 autoimmune hepatitis. Liver Int 32(1):85–92. doi:10.1111/j.1478-3231.2011.02502.x

    Article  CAS  PubMed  Google Scholar 

  75. Zachou K, Gampeta S, Gatselis NK, Oikonomou K, Goulis J, Manoussakis MN, Renaudineau Y, Bogdanos DP, Dalekos GN (2015) Anti-SLA/LP alone or in combination with anti-Ro52 and fine specificity of anti-Ro52 antibodies in patients with autoimmune hepatitis. Liver Int 35(2):660–672. doi:10.1111/liv.12658

    Article  CAS  PubMed  Google Scholar 

  76. Chou MJ, Lee SL, Chen TY, Tsay GJ (1995) Specificity of antinuclear antibodies in primary biliary cirrhosis. Ann Rheum Dis 54(2):148–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dörner T, Feist E, Held C, Conrad K, Burmester GR, Hiepe F (1996) Differential recognition of the 52-kd Ro(SS-A) antigen by sera from patients with primary biliary cirrhosis and primary Sjogren’s syndrome. Hepatology 24(6):1404–1407. doi:10.1002/hep.510240616

    Article  PubMed  Google Scholar 

  78. Granito A, Muratori P, Muratori L, Pappas G, Cassani F, Worthington J, Ferri S, Quarneti C, Cipriano V, de Molo C, Lenzi M, Chapman RW, Bianchi FB (2007) Antibodies to SS-A/Ro-52kD and centromere in autoimmune liver disease: a clue to diagnosis and prognosis of primary biliary cirrhosis. Aliment Pharmacol Ther 26(6):831–838. doi:10.1111/j.1365-2036.2007.03433.x

    Article  CAS  PubMed  Google Scholar 

  79. Saito H, Takahashi A, Abe K, Okai K, Katsushima F, Monoe K, Kanno Y, Ohira H (2012) Autoantibodies by line immunoassay in patients with primary biliary cirrhosis. Fukushima J Med Sci 58(2):107–116

    Article  PubMed  Google Scholar 

  80. Ovalles-Bonilla JG, Nieto JC, Martinez-Barrio J, Lopez-Longo FJ, Janta I, Naredo E, Gonzalez CM, Hinojosa MC, Bello N, Serrano B, Mata-Martinez C, Gonzalez R, Saenz C, Monteagudo I, Hernandez D, Valor L, Carreño L (2015) Clinical and serological profile of children with positive SSA-Ro/SSB-La antibodies. Ann Rheum Dis 74(Suppl 2):844–845. doi:10.1136/annrheumdis-2015-eular.4474

    Article  Google Scholar 

  81. Skog A, Tingström J, Salomonsson S, Sonesson S-E, Wahren-Herlenius M (2013) Neurodevelopment in children with and without congenital heart block born to anti-Ro/SSA-positive mothers. Acta Paediatr 102(1):40–46. doi:10.1111/apa.12049

    Article  PubMed  Google Scholar 

  82. Hon KL, Leung AKC (2012) Neonatal lupus erythematosus. Autoimmune Dis 2012(301274):6. doi:10.1155/2012/301274

    Google Scholar 

  83. Shahian M, Khosravi A, Anbardar M-H (2011) Early cholestasis in neonatal lupus erythematosus. Ann Saudi Med 31(1):80–82

    PubMed  PubMed Central  Google Scholar 

  84. Jaeggi E, Laskin C, Hamilton R, Kingdom J, Silverman E (2010) The importance of the level of maternal anti-Ro/SSA antibodies as a prognostic marker of the development of cardiac neonatal lupus erythematosus a prospective study of 186 antibody-exposed fetuses and infants. J Am Coll Cardiol 55(24):2778–2784. doi:10.1016/j.jacc.2010.02.042

    Article  CAS  PubMed  Google Scholar 

  85. Mina R, Brunner HI (2010) Pediatric lupus—are there differences in presentation, genetics, response to therapy, damage accrual compared to adult lupus? Rheum Dis Clin North Am 36(1):53–80. doi:10.1016/j.rdc.2009.12.012

    Article  PubMed  PubMed Central  Google Scholar 

  86. To CH, Petri M (2005) Is antibody clustering predictive of clinical subsets and damage in systemic lupus erythematosus? Arthr Rheum 52(12):4003–4010. doi:10.1002/art.21414

    Article  CAS  Google Scholar 

  87. Itoh Y, Imai T, Fujino O, Igarashi T, Fukunaga Y (2002) Subclinical Sjögren’s syndrome and anti-Ro/SSA-positive autoimmune fatigue syndrome in children. Mod Rheumatol 12(3):201–205. doi:10.3109/s101650200035

    Article  CAS  PubMed  Google Scholar 

  88. Suresh L, Tomiita M, Hoshioka A, Shen L, Malyavantham K, Ambrus J (2014) Autoantibodies in pediatric Sjogren’s patients. Arthr Rheumatol 66:S1110–S1111

    Google Scholar 

  89. Stiller M, Golder W, Döring E, Biedermann T (2000) Primary and secondary Sjögren’s syndrome in children—a comparative study. Clin Oral Investig 4(3):176–182

    Article  CAS  PubMed  Google Scholar 

  90. Rider LG, Shah M, Mamyrova G, Huber AM, Rice MM, Targoff IN, Miller FW (2013) The myositis autoantibody phenotypes of the juvenile idiopathic inflammatory myopathies. Medicine (Baltimore) 92(4):223–243. doi:10.1097/MD.0b013e31829d08f9

    Article  CAS  Google Scholar 

  91. Habers GEA, Huber AM, Mamyrova G, Targoff IN, O’Hanlon TP, Adams S, Pandey JP, Boonacker C, van Brussel M, Miller FW, van Royen-Kerkhof A, Rider LG (2016) Myositis autoantibodies, clinical features, and environmental exposures at illness onset are associated with disease course in juvenile myositis. Arthr Rheumatol (Hoboken, NJ) 68(3):761–768. doi:10.1002/art.39466

    Article  CAS  Google Scholar 

  92. Tansley SL, Betteridge ZE, Gunawardena H, Jacques TS, Owens CM, Pilkington C, Arnold K, Yasin S, Moraitis E, Wedderburn LR, McHugh NJ (2014) Anti-MDA5 autoantibodies in juvenile dermatomyositis identify a distinct clinical phenotype: a prospective cohort study. Arthr Res Ther 16(4):R138. doi:10.1186/ar4600

    Article  Google Scholar 

  93. Kerkar N, Naon H (2015) Autoimmune liver disease in children. Ann Pediatr Child Health 3(2):1045

    Google Scholar 

  94. Peene I, Van Ael W, Vandenbossche M, Vervaet T, Veys E, De Keyser F (2000) Sensitivity of the HEp-2000 substrate for the detection of anti-SSA/Ro60 antibodies. Clin Rheumatol 19(4):291–295

    Article  CAS  PubMed  Google Scholar 

  95. Human Protein Atlas (2016) TRIM21. http://www.proteinatlas.org/ENSG00000132109-TRIM21/tissue. Accessed 29 Jun 2016

  96. Ghillani P, Andre C, Toly C, Rouquette AM, Bengoufa D, Nicaise P, Goulvestre C, Gleizes A, Dragon-Durey MA, Alyanakian MA, Chretien P, Chollet-Martin S, Musset L, Weill B, Johanet C (2011) Clinical significance of anti-Ro52 (TRIM21) antibodies non-associated with anti-SSA 60 kDa antibodies: results of a multicentric study. Autoimmun Rev 10(9):509–513. doi:10.1016/j.autrev.2011.03.004

    Article  CAS  PubMed  Google Scholar 

  97. Bauhammer J, Blank N, Max R, Lorenz HM, Wagner U, Krause D, Fiehn C (2016) Rituximab in the treatment of Jo1 antibody-associated antisynthetase syndrome: anti-Ro52 positivity as a marker for severity and treatment response. J Rheumatol 43(8):1566–1574. doi:10.3899/jrheum.150844

    Article  PubMed  Google Scholar 

  98. Narciso-Schiavon JL, Freire FC, Suarez MM, Ferrari MV, Scanhola GQ, Schiavon Lde L, de Carvalho Filho RJ, Ferraz ML, Silva AE (2009) Antinuclear antibody positivity in patients with chronic hepatitis C: clinically relevant or an epiphenomenon? Eur J Gastroenterol Hepatol 21(4):440–446

    Article  PubMed  Google Scholar 

  99. Hoffman IE, Peene I, Meheus L, Huizinga TW, Cebecauer L, Isenberg D, De Bosschere K, Hulstaert F, Veys EM, De Keyser F (2004) Specific antinuclear antibodies are associated with clinical features in systemic lupus erythematosus. Ann Rheum Dis 63(9):1155–1158. doi:10.1136/ard.2003.013417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Conti F, Alessandri C, Bompane D, Bombardieri M, Spinelli FR, Rusconi AC, Valesini G (2004) Autoantibody profile in systemic lupus erythematosus with psychiatric manifestations: a role for anti-endothelial-cell antibodies. Arthr Res Ther 6(4):R366–R372. doi:10.1186/ar1198

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Y. S. Lee.

Ethics declarations

Funding

No funding was received for this work.

Conflict of interest

Author AYSL declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, A.Y.S. A review of the role and clinical utility of anti-Ro52/TRIM21 in systemic autoimmunity. Rheumatol Int 37, 1323–1333 (2017). https://doi.org/10.1007/s00296-017-3718-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-017-3718-1

Keywords

Navigation