Skip to main content
Log in

Genetics of trehalose biosynthesis in desert-derived Aureobasidium melanogenum and role of trehalose in the adaptation of the yeast to extreme environments

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Melanin plays an important role in the stress adaptation of Aureobasidium melanogenum XJ5-1 isolated from the Taklimakan desert. A trehalose-6-phosphate synthase gene (TPS1 gene) was cloned from K5, characterized, and then deleted to determine the role of trehalose in the stress adaptation of the albino mutant K5. No stress response element and heat shock element were found in the promoter of the TPS1 gene. Deletion of the TPS1 gene in the albino mutant rendered a strain DT43 unable to synthesize any trehalose, but DT43 still could grow in glucose, suggesting that its hexokinase was insensitive to inhibition by trehalose-6-phosphate. Overexpression of the TPS1 gene enhanced trehalose biosynthesis in strain ET6. DT43 could not grow at 33 °C, whereas K5, ET6, and XJ5-1 could grow well at this temperature. Compared with K5 and ET6, DT43 was highly sensitive to heat shock treatment, high oxidation, and high desiccation, but all the three strains demonstrated the same sensitivity to UV light and high NaCl concentration. Therefore, trehalose played an important role in the adaptation of K5 to heat shock treatment, high oxidation, and high desiccation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Bader N, Vanier G, Liu H, Gravelat FN, Urb M, Hoareau CM, Campoli P, Chabot J, Filler SG, Sheppard DC (2010) Role of trehalose biosynthesis in Aspergillus fumigatus development, stress response, and virulence. Infect Immun 78(7):3007–3018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Argüelles JC, Guirao-Abad JP, Sánchez-Fresneda R (2017) Trehalose: a crucial molecule in the physiology of fungi. In: Roitberg BD (ed) Reference module in life sciences. Elsevier, Amsterdam, pp 1–30

  • Benaroudj N, Lee DH, Goldberg AL (2001) Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem 276(26):24261–24267

    Article  CAS  PubMed  Google Scholar 

  • Blazquez MA, Stucka R, Feldmann H, Gancedo C (1994) Trehalose-6-P synthase is dispensable for growth on glucose but not for spore germination in Schizosaccharomyces pombe. J Bacteriol 176:3895–3902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonini BM, Van Vaeck C, Larsson C, Gustafsson L, Ma P, Winderickx J, Van Dijck P, Thevelein JM (2000) Expression of Escherichia coli otsA in a Saccharomyces cerevisiae tps1 mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis. Biochem J 350(Pt 1):261–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chi ZM, Liu J, Zhang W (2001) Trehalose accumulation from soluble starch by Saccharomycopsis fibuligera sdu. Enzy Microb Technol 28:240–245

    Article  CAS  Google Scholar 

  • Chi ZM, Liu J, Ji J, Meng Z (2003) Enhanced conversion of soluble starch to trehalose by a mutant of Saccharomycopsis fibuligera sdu. J Biotechnol 102:135–141

    Article  CAS  PubMed  Google Scholar 

  • Chi ZM, Chi Z, Liu GL, Wang F, Ju L, Zhang T (2009) Saccharomycopsis fibuligera and its applications in biotechnology. Biotechnol Adv 27:423–431

    Article  CAS  PubMed  Google Scholar 

  • Chi Z, Wang XX, Ma ZC, Buzdar MA, Chi ZM (2012) The unique role of siderophore in marine-derived Aureobasidium pullulans HN6.2. Biometals 25:219–230

    Article  CAS  PubMed  Google Scholar 

  • Doehlemann G, Berndt P, Hahn M (2006) Trehalose metabolism is important for heat stress tolerance and spore germination of Botrytis cinerea. Microbiology 152(Pt 9):2625–2634

    Article  CAS  PubMed  Google Scholar 

  • Eleutherio E, Panek A, De Mesquita JF, Trevisol E, Rayne Magalhães R (2015) Revisiting yeast trehalose metabolism. Curr Genet 61:263–274. doi:10.1007/s00294-014-0450-1

    Article  CAS  PubMed  Google Scholar 

  • Fillinger S, Chaveroche MK, van Dijck P, de Vries R, Ruijter G, Thevelein J, d’Enfert C, (2001) Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology 147(Pt 7):1851–1862

    Article  CAS  PubMed  Google Scholar 

  • Flores CL, Gancedo C, Petit T (2011) Disruption of Yarrowia lipolytica TPS1 gene encoding trehalose-6-P synthase does not affect growth in glucose but impairs growth at high temperature. PLoS One 6(9):e23695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francois JM, Parrou JL (2001) Reserve carbohydrates metabolism in the yeast S. cerevisiae. FEMS Microbiol Rev 25:125–145

    Article  CAS  PubMed  Google Scholar 

  • Gibson RP, Turkenburg JP, Charnock SJ, Lloyd R, Davies GJ (2002) Insights into trehalose synthesis provided by the structure of the retaining glucosyltransferase OtsA. Chem Biol 9:1337–1346

    Article  CAS  PubMed  Google Scholar 

  • Gostinčar C, Ohm RA, Kogej T, Sonjak S, Turk M, Zajc J, Zalar P, Grube M, Sun H, Han J, Sharma A, Chiniquy J, Yee Ngan CY, Lipzen A, Barry K, Grigoriev IV, Gunde-Cimerman N (2014) Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genom 15:549–550

    Article  Google Scholar 

  • Hottiger T, Schmutz P, Wiemken A (1987) Heat induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae. J Bacteriol 169:5518–5522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hounsa CG, Brandt EV, Thevelein J, Hohmann S, Prior BA (1998) Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology 144:671–680

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Liu NN, Liu GL, Chi Z, Wang JM, Zhang LL, Chi ZM (2016) Melanin production by a yeast strain XJ5-1 of Aureobasidium melanogenum isolated from the Taklimakan desert and its role in the yeast survival in stress environments. Extremophiles 20:567–577

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Liu GL, Chi Z, Wang JM, Zhang LL, Chi JM (2017) Both a PKS and a PPTase are involved in melanin biosynthesis and regulation of Aureobasidium melanogenum XJ5-1 isolated from the Taklimakan desert. Gene 602:8–15

    Article  CAS  PubMed  Google Scholar 

  • Lei JQ, Li SY, Fan DD, Zhou HW, Gu F, Qiu YZ, Xu B, Liu S, Du WY, Yan ZH, Wang YD (2008) Classification and regionalization of the forming environment of windblown sand disasters along the Tarim Desert Highway. Chin Sci Bull 53:1–7

    Article  Google Scholar 

  • Li H, Wang HL, Du J, Du G, Zhan JC, Wei-Dong Huang WD (2010) Trehalose protects wine yeast against oxidation under thermal stress. World J Microbiol Biotechnol 26:969–976

    Article  Google Scholar 

  • Li M, Gao Z, Wang Y, Wang H, Zhang S (2014) Identification, expression and bioactivity of hexokinase in amphioxus: insights into evolution of vertebrate hexokinase genes. Gene 535:318–326

    Article  CAS  PubMed  Google Scholar 

  • Li C, Lei J, Zhao Y, Xu X, Li S (2015a) Effect of saline water irrigation on soil development and plant growth in the Taklimakan desert highway shelter belt. Soil Tillage Res 146:99–107

    Article  Google Scholar 

  • Li Y, Chi Z, Wang GY, Wang ZP, Liu GL, Lee CF, Ma ZC, Chi ZM (2015b) Taxonomy of Aureobasidium spp. and biosynthesis and regulation of their extracellular polymers. Crit Rev Microbiol 41:228–237

    Article  CAS  PubMed  Google Scholar 

  • Liu GL, Wang DS, Wang LF, Zhao SF, Chi ZM (2011) Mig1 is involved in mycelial formation and expression of the genes encoding extracellular enzymes in Saccharomycopsis fibuligera A11. Fung Genet Biol 48:904–913

    Article  CAS  Google Scholar 

  • Luyten K, de Koning W, Tesseur I, Ruiz MC, Ramos J, Cobbaert P, Thevelein JM, Hohmann S (1993) Disruption of the Kluyveromyces lactis GGS1 gene causes inability to grow on glucose and fructose and is suppressed by mutations that reduce sugar uptake. Eur J Biochem 217:701–713

    Article  CAS  PubMed  Google Scholar 

  • Morimoto RI, Kline MP, Bimston DN, Cotto JJ (1997) The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones. Essays Biochem 32:17–29

    CAS  PubMed  Google Scholar 

  • Rangel DEN, Alder Rangel A, Dadachova E, Finlay RD, Kupiec M, Dijksterhuis J, Braga GUL, Corrochano LM, Hallsworth JE (2015) Fungal stress biology: a preface to the fungal stress responses special edition. Curr Genet 61:231–238. doi:10.1007/s00294-015-0500-3

    Article  CAS  PubMed  Google Scholar 

  • Reinders A, Romano I, Wiemken A, De Virgilio C (1999) The thermophilic yeast Hansenula polymorpha does not require trehalose synthesis for growth at high temperatures but does for normal acquisition of thermotolerance. J Bacteriol 181:4665–4668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro MJ, Reinders A, Boller T, Wiemken A, De Virgilio C (1997) Trehalose synthesis is important for the acquisition of thermotolerance in Schizosaccharomyces pombe. Mol Microbiol 25:571–581

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Texeira M, Van Zeebroeck G, Thevelein JM (2016) Trehalose metabolism: enzymatic pathways and physiological functions. In: Hoffmeister D (ed) Biochemistry and molecular biology, 3rd edn. Springer International Publishing, Switzerland, pp 191–227

    Chapter  Google Scholar 

  • Sterflinger K, Tesei D, Zakharova K (2012) Fungi in hot and cold deserts with particular reference to microcolonial fungi. Fung Ecol 5:453–462

    Article  Google Scholar 

  • Stewart PR (1982) In: Prescott DM (ed) Methods in cell biology, vol. 12. Academic Press, London, pp 111–147

  • Tapia H, Young L, Fox D, Bertozzi CR, Koshland D (2015) Increasing intracellular trehalose is sufficient to confer desiccation tolerance to Saccharomyces cerevisiae. PNAS 112:6122–6127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Van Aelst L, Hohmann S, Bulaya B, de Koning W, Sierkstra L, Neves MJ, Luyten K, Alijo R, Ramos J, Coccetti P, Martegani E, de Magalhaes-Rocha NM, Brandao RL, Van Dijck P, Vanhalewyn M, Durnez P, Jans AWH, Thevelein JM (1993) Molecular cloning of a gene involved in glucose sensing in the yeast Saccharomyces cerevisiae. Mol Microbiol 8:927–943

    Article  PubMed  Google Scholar 

  • Wang QQ, Lu Y, Ren ZY, Chi Z, Liu GL, Chi ZM (2017) CreA is directly involved in pullulan biosynthesis and regulation of Aureobasidium melanogenum P16. Curr Genet 63:471–485

    Article  CAS  PubMed  Google Scholar 

  • Wolschek MF, Kubicek CP (1997) The filamentous fungus Aspergillus niger contains two ‘differentially regulated’ trehalose-6-phosphate synthase encoding genes, tpsA and tpsB. J Biol Chem 272:2729–2735

    Article  CAS  PubMed  Google Scholar 

  • Zaragoza O, Blazquez MA, Gancedo C (1998) Disruption of the Candida albicans TPS1 gene encoding trehalose-6-phosphate synthase impairs formation of hyphae and decreases infectivity. J Bacteriol 180(15):3809–3815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang FL, Chi ZM, Zhu KL, Li J, Li MJ, Liang LK, Wu LF (2007) Expression in Escherichia coli of the recombinant Vibrio anguillarum metalloprotease and its purification and characterization. World J Microbiol Biotechnol 23(3):331–337

    Article  Google Scholar 

  • Zhang F, Wang ZP, Chi Z, Raoufi Z, Abdollahi S, Chi ZM (2013) The changes in Tps1 activity, trehalose content and expression of TPS1 gene in the psychrotolerant yeast Guehomyces pullulans 17-1 grown at different temperatures. Extremophiles 17:241–249

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by National Natural Science Foundation of China (Grant No. 31561163001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Ming Chi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Communicated by M. Kupiec.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Liu, GL., Chi, Z. et al. Genetics of trehalose biosynthesis in desert-derived Aureobasidium melanogenum and role of trehalose in the adaptation of the yeast to extreme environments. Curr Genet 64, 479–491 (2018). https://doi.org/10.1007/s00294-017-0762-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-017-0762-z

Keywords

Navigation