Skip to main content
Log in

The ribosome-bound quality control complex: from aberrant peptide clearance to proteostasis maintenance

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Proteostasis in eukaryotes is maintained by compartment-specific quality control pathways, which enable the refolding or the degradation of defective polypeptides to prevent the toxicity that may arise from their aggregation. Among these processes, translational protein quality control is performed by the Ribosome-bound Quality Control complex (RQC), which recognizes nascent peptides translated from aberrant mRNAs, polyubiquitylates these aberrant peptides, extracts them from the stalled 60S subunit and finally escorts them to the proteasome for degradation. In this review, we focus on the mechanism of action of the RQC complex from stalled 60S binding to aberrant peptide delivery to the proteasome and describe the cellular consequences of a deficiency in the RQC pathway, such as aberrant protein aggregation. In addition, this review covers the recent discoveries concerning the role of cytosolic chaperones, as well as Tom1, to prevent the accumulation of aberrant protein aggregates in case of a deficiency in the RQC pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

RQC:

Ribosome-bound Quality Control

PQC:

Protein quality control

eRF:

Eukaryotic recycling factor

RING:

Really interesting new gene

NEMF:

Nuclear export mediator factor

CAT:

C-terminal alanine threonine

HUWE1:

HECT, UBA and WWE domain-containing protein 1

References

  • Bengtson MH, Joazeiro CAP (2010) Role of a ribosome-associated E3 ubiquitin ligase in protein quality control. Nature 467:470–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besche HC, Haas W, Gygi SP, Goldberg AL (2009) Isolation of mammalian 26S proteasomes and p97/VCP complexes using the ubiquitin-like domain from HHR23B reveals novel proteasome-associated proteins. Biochemistry 48:2538–2549

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya S, Yu H, Mim C, Matouschek A (2014) Regulated protein turnover: snapshots of the proteasome in action. Nat Rev Mol Cell Biol 15:122–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandman O, Hegde RS (2016) Ribosome-associated protein quality control. Nat Struct Mol Biol 23:7–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandman O et al (2012) A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell 151:1042–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chernoff YO, Kiktev DA (2016) Dual role of ribosome-associated chaperones in prion formation and propagation. Curr Genet 62:677–685

    Article  CAS  PubMed  Google Scholar 

  • Choe Y-J, Park S-H, Hassemer T, Körner R, Vincenz-Donnelly L, Hayer-Hartl M, Hartl FU (2016) Failure of RQC machinery causes protein aggregation and proteotoxic stress. Nature 531:191–195

    Article  CAS  PubMed  Google Scholar 

  • Chu J, Hong NA, Masuda CA, Jenkins BV, Nelms KA, Goodnow CC, Glynne RJ, Wu H, Masliah E, Joazeiro CA (2009) A mouse forward genetics screen identifies LISTERIN as an E3 ubiquitin ligase involved in neurodegeneration. Proc Natl Acad Sci USA 106:2097–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciechanover A, Kwon YT (2015) Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med 47:e147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowder JJ, Geigges M, Gibson RT, Fults ES, Buchanan BW, Sachs N, Schink A, Kreft SG, Rubenstein EM (2015) Rkr1/Ltn1 ubiquitin ligase-mediated degradation of translationally stalled endoplasmic reticulum proteins. J Biol Chem 290:18454–18466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Defenouillère Q et al (2013) Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products. Proc Natl Acad Sci USA 110:5046–5051

    Article  PubMed  PubMed Central  Google Scholar 

  • Defenouillère Q, Zhang E, Namane A, Mouaikel J, Jacquier A, Fromont-Racine M (2016) Rqc1 and Ltn1 prevent C-terminal alanine-threonine tail (CAT-tail)-induced protein aggregation by efficient recruitment of Cdc48 on stalled 60S subunits. J Biol Chem 291:12245–12253

    Article  PubMed  PubMed Central  Google Scholar 

  • Defenouillère Q, Namane A, Mouaikel J, Jacquier A, Fromont-Racine M (2017) The ribosome-bound quality control complex remains associated to aberrant peptides during their proteasomal targeting and interacts with Tom1 to limit protein aggregation. Mol Biol Cell 28:1165–1176

    Article  PubMed  PubMed Central  Google Scholar 

  • Dimitrova LN, Kuroha K, Tatematsu T, Inada T (2009) Nascent peptide-dependent translation arrest leads to not4p-mediated protein degradation by the proteasome. J Biol Chem 284:10343–10352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doamekpor SK et al (2016) Structure and function of the yeast listerin (Ltn1) conserved N-terminal domain in binding to stalled 60S ribosomal subunits. Proc Natl Acad Sci USA 113:4151–4160

    Article  Google Scholar 

  • Doma MK, Parker R (2006) Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 440:561–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finger A, Knop M, Wolf DH (1993) Analysis of two mutated vacuolar proteins reveals a degradation pathway in the endoplasmic reticulum or a related compartment of yeast. Eur J Biochem FEBS 218:565–574

    Article  CAS  Google Scholar 

  • Frischmeyer PA, van Hoof A, O’Donnell K, Guerrerio AL, Parker R, Dietz HC (2002) An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295:2258–2261

    Article  CAS  PubMed  Google Scholar 

  • Guydosh NR, Green R (2014) Dom34 rescues ribosomes in 3′ untranslated regions. Cell 156:950–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izawa T, Tsuboi T, Kuroha K, Inada T, Nishikawa S, Endo T (2012) Roles of Dom34:Hbs1 in nonstop protein clearance from translocators for normal organelle protein influx. Cell Rep 2:447–453

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Jin S, Wu W (2016) Regulation of bacterial gene expression by ribosome stalling and rescuing. Curr Genet 62:309–312

    Article  CAS  PubMed  Google Scholar 

  • Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143:1883–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuroha K, Akamatsu M, Dimitrova L, Ito T, Kato Y, Shirahige K, Inada T (2010) Receptor for activated C kinase 1 stimulates nascent polypeptide-dependent translation arrest. EMBO Rep 11:956–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyumkis D, Oliveira Dos Passos D, Tahara EB, Webb K, Bennett EJ, Vinterbo S, Potter CS, Carragher B, Joazeiro CAP (2014) Structural basis for translational surveillance by the large ribosomal subunit-associated protein quality control complex. Proc Natl Acad Sci USA 111:15981–15986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda R, Ikeuchi K, Nomura S, Inada T (2014) Protein quality control systems associated with no-go and nonstop mRNA surveillance in yeast. Genes Cells Devoted Mol Cell Mech 19:1–12

    Article  CAS  Google Scholar 

  • Meyer HH, Shorter JG, Seemann J, Pappin D, Warren G (2000) A complex of mammalian ufd1 and npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J 19:2181–2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozsolak F, Kapranov P, Foissac S, Kim SW, Fishilevich E, Monaghan AP, John B, Milos PM (2010) Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell 143:1018–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preissler S, Reuther J, Koch M, Scior A, Bruderek M, Frickey T, Deuerling E (2015) Not4-dependent translational repression is important for cellular protein homeostasis in yeast. EMBO J 34:1905–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richly H, Rape M, Braun S, Rumpf S, Hoege C, Jentsch S (2005) A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120:73–84

    Article  CAS  PubMed  Google Scholar 

  • Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum JC et al (2011) Disorder targets misorder in nuclear quality control degradation: a disordered ubiquitin ligase directly recognizes its misfolded substrates. Mol Cell 41:93–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10(Suppl):S10–S17

    Article  PubMed  Google Scholar 

  • Saarikangas J, Barral Y (2016) Protein aggregation as a mechanism of adaptive cellular responses. Curr Genet 62:711–724

    Article  CAS  PubMed  Google Scholar 

  • Schmidt C et al (2016) The cryo-EM structure of a ribosome-Ski2-Ski3-Ski8 helicase complex. Science 354:1431–1433

    Article  CAS  PubMed  Google Scholar 

  • Shao S, Hegde RS (2014) Reconstitution of a minimal ribosome-associated ubiquitination pathway with purified factors. Mol Cell 55:880–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao S, von der Malsburg K, Hegde RS (2013) Listerin-dependent nascent protein ubiquitination relies on ribosome subunit dissociation. Mol Cell 50:637–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao S, Brown A, Santhanam B, Hegde RS (2015) Structure and assembly pathway of the ribosome quality control complex. Mol Cell 57:433–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen PS et al (2015) Protein synthesis. Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains. Science 347:75–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoemaker CJ, Green R (2011) Kinetic analysis reveals the ordered coupling of translation termination and ribosome recycling in yeast. Proc Natl Acad Sci USA 108:1392–1398

    Article  Google Scholar 

  • Shoemaker CJ, Eyler DE, Green R (2010) Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay. Science 330:369–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sitron CS, Park JH, Brandman O (2017) Asc1, Hel2, and Slh1 couple translation arrest to nascent chain degradation. RNA 23:798–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung M-K, Porras-Yakushi TR, Reitsma JM, Huber FM, Sweredoski MJ, Hoelz A, Hess S, Deshaies RJ (2016) A conserved quality-control pathway that mediates degradation of unassembled ribosomal proteins. eLife 5:e19105

    Article  PubMed  PubMed Central  Google Scholar 

  • van Hoof A, Frischmeyer PA, Dietz HC, Parker R (2002) Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295:2262–2264

    Article  PubMed  Google Scholar 

  • Verma R, Aravind L, Oania R, McDonald WH, Yates JR, Koonin EV, Deshaies RJ (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298:611–615

    Article  CAS  PubMed  Google Scholar 

  • Verma R, Oania RS, Kolawa NJ, Deshaies RJ (2013) Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome. eLife 2:e00308

    Article  PubMed  PubMed Central  Google Scholar 

  • von der Malsburg K, Shao S, Hegde RS (2015) The ribosome quality control pathway can access nascent polypeptides stalled at the Sec61 translocon. Mol Biol Cell 26:2168–2180

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Meriin AB, Zaarur N, Romanova NV, Chernoff YO, Costello CE, Sherman MY (2008) Abnormal proteins can form aggresome in yeast: aggresome-targeting signals and components of the machinery. FASEB J 23:451–463

    Article  PubMed  Google Scholar 

  • Yang J, Hao X, Cao X, Liu B, Nyström T (2016) Spatial sequestration and detoxification of Huntingtin by the ribosome quality control complex. eLife 5:e11792

    PubMed  PubMed Central  Google Scholar 

  • Yonashiro R et al (2016) The Rqc2/Tae2 subunit of the ribosome-associated quality control (RQC) complex marks ribosome-stalled nascent polypeptide chains for aggregation. eLife 5:e11794

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by ANR-14-CE-10-0014-01 from the Agence Nationale de la Recherche, the Institut Pasteur, and the Centre National de la Recherche Scientifique. Q.D. was supported by a postdoctoral fellowship from the Fondation pour la Recherche Médicale (SPF20150934065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin Defenouillère.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Defenouillère, Q., Fromont-Racine, M. The ribosome-bound quality control complex: from aberrant peptide clearance to proteostasis maintenance. Curr Genet 63, 997–1005 (2017). https://doi.org/10.1007/s00294-017-0708-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-017-0708-5

Keywords

Navigation