Skip to main content
Log in

Porous polymer beads with grafted poly(tertiary amine) as catalysts for fixation of carbon dioxide into propylene carbonate

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Porous polymer beads with grafted poly(tertiary amine) were prepared by grafting triethylenetetramine to porous crosslinked poly(methyl acrylate) beads via ester amidation reaction, followed by Eschweiler–Clarke methylation reaction using formaldehyde and formic acid to converting the primary and secondary amine groups to tertiary amines in the beads. The tertiary amine groups in the beads were protonated with hydrochloric acid, hydrobromic acid or hydriodic acid, and the protonated tertiary amine group-containing beads showed high catalytic activity and high selectivity for the formation of propylene carbonate through cycloaddition of propylene oxide with CO2, while free tertiary amine group-containing beads exhibited almost no catalytic activity. The recyclability of the catalyst was studied, and slight loss of the activity was observed after five runs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Guo L, Lamb KJ, North M (2021) Recent developments in organocatalysed transformations of epoxides and carbon dioxide into cyclic carbonates. Green Chem 23(1):77–118

    Article  CAS  Google Scholar 

  2. Climate change: How do we know? https://climate.nasa.gov/evidence/. Accessed 16 June 2020

  3. IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1–30

    Google Scholar 

  4. Zahasky C, Krevor S (2020) Global geologic carbon storage requirements of climate change mitigation scenarios. Energy Environ Sci 13(16):1561–1567. https://doi.org/10.1039/D0EE00674B

    Article  CAS  Google Scholar 

  5. Meylan FD, Moreau V, Erkman S (2015) CO2 utilization in the perspective of industrial ecology an overview. J CO2 Util 12:101–108

    Article  CAS  Google Scholar 

  6. Burkart MD, Hazari N, Tway CL, Zeitler EL (2019) Opportunities and challenges for catalysis in carbon dioxide utilization. ACS Catal 9(9):7937–7956. https://doi.org/10.1021/acscatal.9b02113

    Article  CAS  Google Scholar 

  7. Dabral S, Schaub T (2019) The use of carbon dioxide (CO2) as a building block in organic synthesis from an industrial perspective. Adv Synth Catal 361(2):223–246. https://doi.org/10.1002/adsc.201801215

    Article  CAS  Google Scholar 

  8. Kar S, Goeppert A, Prakash GKS (2019) Integrated CO2 capture and conversion to formate and methanol: connecting two threads. Acc Chem Res 52(10):2892–2903. https://doi.org/10.1021/acs.accounts.9b00324

    Article  CAS  PubMed  Google Scholar 

  9. Rehman A, Saleem F, Javed F, Ikhlaq A, Ahmad SW, Harvey A (2021) Recent advances in the synthesis of cyclic carbonates via CO2 cycloaddition to epoxides. J Environ Chem Eng 9(2):105113

    Article  CAS  Google Scholar 

  10. Sakakura T, Choi J-C, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107(6):2365–2387. https://doi.org/10.1021/cr068357u

    Article  CAS  PubMed  Google Scholar 

  11. Song Q-W, Zhou Z-H, He L-N (2017) Efficient, selective and sustainable catalysis of carbon dioxide. Green Chem 19(16):3707–3728. https://doi.org/10.1039/C7GC00199A

    Article  CAS  Google Scholar 

  12. Schäffner B, Schäffner F, Verevkin SP, Börner A (2010) Organic carbonates as solvents in synthesis and catalysis. Chem Rev 110(8):4554–4581

    Article  PubMed  Google Scholar 

  13. Vivek JP, Berry N, Papageorgiou G, Nichols RJ, Hardwick LJ (2016) Mechanistic insight into the superoxide induced ring opening in propylene carbonate based electrolytes using in situ surface-enhanced infrared spectroscopy. J Am Chem Soc 138(11):3745–3751. https://doi.org/10.1021/jacs.5b12494

    Article  CAS  PubMed  Google Scholar 

  14. Blattmann H, Fleischer M, Bähr M, Mülhaupt R (2014) Isocyanate- and phosgene-free routes to polyfunctional cyclic carbonates and green polyurethanes by fixation of carbon dioxide. Macromol Rapid Commun 35(14):1238–1254. https://doi.org/10.1002/marc.201400209

    Article  CAS  PubMed  Google Scholar 

  15. Rokicki G, Parzuchowski PG, Mazurek M (2015) Non-isocyanate polyurethanes: synthesis, properties, and applications. Polym Adv Technol 26(7):707–761. https://doi.org/10.1002/pat.3522

    Article  CAS  Google Scholar 

  16. Guo W, Gónzalez-Fabra J, Bandeira NAG, Bo C, Kleij AW (2015) A metal-free synthesis of N-aryl carbamates under ambient conditions. Angew Chem Int Ed 54(40):11686–11690. https://doi.org/10.1002/anie.201504956

    Article  CAS  Google Scholar 

  17. Hara Y, Onodera S, Kochi T, Kakiuchi F (2015) Catalytic formation of α-aryl ketones by C–H functionalization with cyclic alkenyl carbonates and one-pot synthesis of isocoumarins. Org Lett 17(19):4850–4853. https://doi.org/10.1021/acs.orglett.5b02414

    Article  CAS  PubMed  Google Scholar 

  18. North M, Pasquale R, Young C (2010) Synthesis of cyclic carbonates from epoxides and CO2. Green Chem 12(9):1514–1539. https://doi.org/10.1039/c0gc00065e

    Article  CAS  Google Scholar 

  19. Kleij AW, North M, Urakawa A (2017) CO2 catalysis. Chem Sus Chem 10(6):1036–1038. https://doi.org/10.1002/cssc.201700218

    Article  CAS  Google Scholar 

  20. Sun H, Zhang D (2007) Density functional theory study on the cycloaddition of carbon dioxide with propylene oxide catalyzed by alkylmethylimidazolium chlorine ionic liquids. J Phys Chem A 111(32):8036–8043. https://doi.org/10.1021/jp073873p

    Article  CAS  PubMed  Google Scholar 

  21. Ma J, Liu J, Zhang Z, Han B (2012) The catalytic mechanism of KI and the co-catalytic mechanism of hydroxyl substances for cycloaddition of CO2 with propylene oxide. Green Chem 14(9):2410–2420. https://doi.org/10.1039/c2gc35711a

    Article  CAS  Google Scholar 

  22. Aida T, Inoue S (1983) Activation of carbon dioxide with aluminum porphyrin and reaction with epoxide. Studies on (tetraphenylporphinato)aluminum alkoxide having a long oxyalkylene chain as the alkoxide group. J Am Chem Soc 105(5):1304–1309. https://doi.org/10.1021/ja00343a038

    Article  CAS  Google Scholar 

  23. Paddock RL, Nguyen ST (2001) Chemical CO2 fixation: Cr(III) salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides. J Am Chem Soc 123(46):11498–11499. https://doi.org/10.1021/ja0164677

    Article  CAS  PubMed  Google Scholar 

  24. Emelyanov MA, Stoletova NV, Lisov AA, Medvedev MG, Smol’yakov AF, Maleev VI, Larionov VA (2021) An octahedral cobalt(III) complex based on cheap 1,2-phenylenediamine as a bifunctional metal-templated hydrogen bond donor catalyst for fixation of CO2 with epoxides under ambient conditions. Inorg Chem Front 8:3871–3884

    Article  CAS  Google Scholar 

  25. Cho W, Shin MS, Hwang S, Kim H, Kim M, Kim JG, Kim Y (2016) Tertiary amines: a new class of highly efficient organocatalysts for CO2 fixations. J Ind Eng Chem 44:210–215. https://doi.org/10.1016/j.jiec.2016.09.015

    Article  CAS  Google Scholar 

  26. Kumatabara Y, Okada M, Shirakawa S (2017) Triethylamine hydroiodide as a simple yet effective bifunctional catalyst for CO2 fixation reactions with epoxides under mild conditions. ACS Sustain Chem Eng 5(8):7295–7301. https://doi.org/10.1021/acssuschemeng.7b01535

    Article  CAS  Google Scholar 

  27. Caló V, Nacci A, Monopoli A, Fanizzi A (2002) Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabutylammonium halides as solvents and catalysts. Org Lett 4(15):2561–2563. https://doi.org/10.1021/ol026189w

    Article  CAS  PubMed  Google Scholar 

  28. Ema T, Fukuhara K, Sakai T, Ohbo M, Bai F-Q, Hasegawa J-Y (2015) Quaternary ammonium hydroxide as a metal-free and halogen-free catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide. Catal Sci Technol 5(4):2314–2321. https://doi.org/10.1039/C5CY00020C

    Article  CAS  Google Scholar 

  29. Peng J, Deng Y (2001) Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids. New J Chem 25(4):639–641. https://doi.org/10.1039/b008923k

    Article  CAS  Google Scholar 

  30. Sun J, Zhang S, Cheng W, Ren J (2008) Hydroxyl-functionalized ionic liquid: a novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate. Tetra Lett 49(22):3588–3591. https://doi.org/10.1016/j.tetlet.2008.04.022

    Article  CAS  Google Scholar 

  31. Anthofer MH, Wilhelm ME, Cokoja M, Drees M, Herrmann WA, Kuhn FE (2015) Hydroxy-functionalized imidazolium bromides as catalysts for the cycloaddition of CO2 and epoxides to cyclic carbonates. ChemCatChem 7(1):94–98. https://doi.org/10.1002/cctc.201402754

    Article  CAS  Google Scholar 

  32. Qiu M, Li J, Wu H, Huang Y, Guo H, Gao D, Shi L, Yi Q (2023) One-pot non-covalent heterogenization and aromatization of poly(ionic liquids) for metal-/cocatalyst-free and atmospheric CO2 conversion. Appl Catal B: Environ 322:122125

    Article  CAS  Google Scholar 

  33. Kihara N, Hara N, Endo T (1993) Catalytic activity of various salts in the reaction of 2,3-epoxypropyl phenyl ether and carbon dioxide under atmospheric pressure. J Org Chem 58(23):6198–6202. https://doi.org/10.1021/jo00075a011

    Article  CAS  Google Scholar 

  34. Liang S, Liu H, Jiang T, Song J, Yang G, Han B (2011) Highly efficient synthesis of cyclic carbonates from CO2 and epoxides over cellulose/KI. Chem Commun 47(7):2131–2133. https://doi.org/10.1039/C0CC04829A

    Article  CAS  Google Scholar 

  35. Zhang Y-Y, Chen L, Yin S-F, Luo S-L, Au C-T (2015) Low-cost polymer-supported quaternary ammonium salts as high-efficiency catalysts for cycloaddition of CO2 to epoxides. Chem Sus Chem 8:2031–2034

    Google Scholar 

  36. Alassmy YA, Pour ZA, Pescarmona PP (2020) Efficient and easily reusable metal-free heterogeneous catalyst beads for the conversion of CO2 into cyclic carbonates in the presence of water as hydrogen-bond donor. ACS Sustain Chem Eng 8(21):7993–8003. https://doi.org/10.1021/acssuschemeng.0c02265

    Article  CAS  Google Scholar 

  37. Chang T, Yan X, Li Y, Hao Y, Fu X, Liu X, Panchal B, Qin S, Zhu Z (2022) Quaternary ammonium immobilized PAMAM as efficient catalysts for conversion of carbon dioxide. J CO2 Util 58:101913

    Article  CAS  Google Scholar 

  38. Yin QR, Li XH, Yan XL, Zhang XJ, Qin SJ, Hao YJ, Li NN, Zhu Z, Liu XH, Chang T (2023) Optimization and kinetics modeling of CO2 fixation into cyclic carbonates using urea-functionalized ionic organic polymers under mild conditions. Mol Catal 550:113601

    Article  CAS  Google Scholar 

  39. Xie Y, Zhang Z, Jiang T, He J, Han B, Wu T, Ding K (2007) CO2 cycloaddition reactions catalyzed by an ionic liquid grafted onto a highly cross-linked polymer matrix. Angew Chem Int Ed 46(38):7255–7257. https://doi.org/10.1002/anie.200701467

    Article  CAS  Google Scholar 

  40. Ghazali-Esfahani S, Song H, Păunescu E, Bobbink FD, Liu H, Fei Z, Laurenczy G, Bagherzadeh M, Yan N, Dyson PJ (2013) Cycloaddition of CO2 to epoxides catalyzed by imidazolium-based polymeric ionic liquids. Green Chem 15(6):1584–1589. https://doi.org/10.1039/c3gc37085b

    Article  CAS  Google Scholar 

  41. Wan Y-L, Wang L, Wen L (2022) Amide-functionalized organic cationic polymers toward enhanced catalytic performance for conversion of CO2 into cyclic carbonates. J CO2 Utili 64:102174. https://doi.org/10.1016/j.jcou.2022

    Article  CAS  Google Scholar 

  42. Beyzavi MH, Klet RC, Tussupbayev S, Borycz J, Vermeulen N, Cramer C, Stoddart JF, Hupp JT, Farha OK (2014) A hafnium-based metal–organic framework as an efficient and multifunctional catalyst for facile CO2 fixation and regioselective and enantioretentive epoxide activation. J Am Chem Soc 136(45):15861–15864. https://doi.org/10.1021/ja508626n

    Article  CAS  PubMed  Google Scholar 

  43. Das S, Zhang J, Chamberlain TW, Clarkson GJ, Walton RI (2022) Nonredox CO2 fixation in solvent-free conditions using a lewis acid metal–organic framework constructed from a sustainably sourced ligand. Inorg Chem 61(46):18536–18544. https://doi.org/10.1021/acs.inorgchem.2c02749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee S-D, Kim B-M, Kim D-W, Kim M-I, Roshan KR, Kim M-K, Won Y-S, Park D-W (2014) Synthesis of cyclic carbonate from carbon dioxide and epoxides with polystyrene-supported quaternized ammonium salt catalysts. Appl Catal A: Gen 486:69–76. https://doi.org/10.1016/j.apcata.2014.08.029

    Article  CAS  Google Scholar 

  45. Whiteoak CJ, Henseler AH, Ayats C, Kleij AW, Pericàs MA (2014) Conversion of oxiranes and CO2 to organic cyclic carbonates using a recyclable, bifunctional polystyrene-supported organocatalyst. Green Chem 16(3):1552–1559. https://doi.org/10.1039/c3gc41919c

    Article  CAS  Google Scholar 

  46. Qi C, Ye J, Zeng W, Jiang H (2010) Polystyrene-supported amino acids as efficient catalyst for chemical fixation of carbon dioxide. Adv Synth Catal 352(11–12):1925–1933. https://doi.org/10.1002/adsc.201000261

    Article  CAS  Google Scholar 

  47. Liu Y, Hu Y, Zhou J, Zhu Z, Zhang Z, Li Y, Wang L, Zhang J (2021) Polystyrene-supported novel imidazolium ionic liquids: highly efficient catalyst for the fixation of carbon dioxide under atmospheric pressure. Fuel 305:121495

    Article  CAS  Google Scholar 

  48. Dutcher B, Fan M, Russell AG (2015) Amine-based CO2 capture technology development from the beginning of 2013: a review. ACS Appl Mater Interfaces 7(4):2137–2148. https://doi.org/10.1021/am507465f

    Article  CAS  PubMed  Google Scholar 

  49. Schaffer A, Brechtel K, Scheffknecht G (2012) Comparative study on differently concentrated aqueous solutions of MEA and TETA for CO2 capture from flue gases. Fuel 148:148–153

    Article  Google Scholar 

  50. Muchan P, Narku-Tetteh J, Saiwan C, Idem R, Supap T (2017) Effect of number of amine groups in aqueous polyamine solution on carbon dioxide (CO2) capture activities. Sep Purif Technol 184:128–134. https://doi.org/10.1016/j.seppur.2017.04.031

    Article  CAS  Google Scholar 

  51. Yuan M, Gao G, Hu X, Luo X, Huang Y, Jin B, Liang Z (2018) Premodified sepiolite functionalized with triethylenetetramine as an effective and inexpensive adsorbent for CO2 capture. Ind Eng Chem Res 57(18):6189–6200. https://doi.org/10.1021/acs.iecr.8b00348

    Article  CAS  Google Scholar 

  52. Zhang W, Gao E, Li Y, Bernards MT, He Y, Shi Y (2019) CO2 capture with polyamine-based protic ionic liquid functionalized mesoporous silica. J CO2 Util 34:606–615. https://doi.org/10.1016/j.jcou.2019.08.012

    Article  CAS  Google Scholar 

  53. Zhang S, Cui Q, Li Y, Niu W, Li X, Liu J, Peng H, Jiang L, Yan H (2022) Immobilization of penicillin g acylase on resin carriers with amino groups. Ion Exch Adsorp 38:415–425

    Google Scholar 

  54. Liu M, Li X, Liang L, Sun J (2016) Protonated triethanolamine as multi-hydrogen bond donors catalyst for efficient cycloaddition of CO2 to epoxides under mild and cocatalyst-free conditions. J CO2 Util 16:384–390. https://doi.org/10.1016/j.jcou.2016.10.004

    Article  CAS  Google Scholar 

  55. Aoyagi N, Furusho Y, Endo T (2012) Remarkably efficient catalysts of amidine hydroiodides for the synthesis of cyclic carbonates from carbon dioxide and epoxides under mild conditions. Chem Lett 41(3):240–241. https://doi.org/10.1246/cl.2012.240

    Article  CAS  Google Scholar 

  56. Li C, Liu F, Zhao T, Gu J, Chen P, Chen T (2021) Highly efficient CO2 fixation into cyclic carbonate by hydroxyl-functionalized protic ionic liquids at atmospheric pressure. Mol Catal 511:111756

    Article  CAS  Google Scholar 

  57. Bento AP, Bickelhaupt FM (2008) Nucleophilicity and leaving-group ability in frontside and backside SN2 reactions. J Org Chem 73(18):7290–7299. https://doi.org/10.1021/jo801215z

    Article  CAS  PubMed  Google Scholar 

  58. Liu M, Wang X, Jiang Y, Sun J, Arai M (2019) Hydrogen bond activation strategy for cyclic carbonates synthesis from epoxides and CO2: current state-of-the art of catalyst development and reaction analysis. Catal Rev 61:214–269. https://doi.org/10.1080/01614940.2018.1550243

    Article  CAS  Google Scholar 

  59. Cokoja M, Wilhelm ME, Anthofer MH, Herrmann WA, Kuhn FE (2015) Synthesis of cyclic carbonates from epoxides and carbon dioxide by using organocatalysts. Chem Sus Chem 8(15):2436–2454. https://doi.org/10.1002/cssc.201500161

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by PCSIRT (IRT1257).

Author information

Authors and Affiliations

Authors

Contributions

WN contributed to the conceptualization, methodology, validation, data curation, investigation and writing—original draft. ZY contributed to the methodology, data curation and validation. DC contributed to the methodology, data curation and validation. LZ contributed to the methodology, data curation and validation. WG contributed conceptualization, methodology, data curation and writing—review and editing. HY contributed to the conceptualization, methodology, data curation, supervision and writing—review and editing.

Corresponding authors

Correspondence to Weilei Guo or Husheng Yan.

Ethics declarations

Conflict of interest

The authors declare that there are no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, W., Yin, Z., Chen, D. et al. Porous polymer beads with grafted poly(tertiary amine) as catalysts for fixation of carbon dioxide into propylene carbonate. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05281-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05281-2

Keywords

Navigation