Skip to main content
Log in

Impact of heavy metal waste on gamma ray shielding performance of epoxy resin: an experimental investigation

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The project's goal is to create new, low-cost materials with low density that can withstand the transport of γ-photons with low and intermediate energy. As a result, a set of four epoxy resins reinforced with different amounts of heavy metallic debris were created. By enlarging the waste component of the manufactured composites by 0–40 wt%, the density of the composites increased from 1.134 ± 0.022 to 1.560 ± 0.0312 g/cm3. The experimental assessment of the linear attenuation coefficient shows an increase with factors of 6.6, 2, and 1.5 times, respectively, for—photon energies of 33, 121, and 662 keV. The augmentation composites density has an impact on these parameters. The half-value thickness and the transmission factor for the fabricated composites decreased with enriching the heavy metallic waste composition, where the half-value thickness decreased from 5.95 to 3.08 cm as well as the transmission factor decreased from 89.01 to 79.86% with enriching the heavy metallic waste concentration from 0 to 40 wt%. The study shows the invalidity to use the fabricated samples to attenuate the γ-photons with energies higher than 662 keV, where the linear attenuation coefficient enhanced by a factor of 19% from 0.078 to 0.094 cm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Awad M, El Mezayen AM, El Azab A, Alfi SM, Ali HH, Hanfi MY (2022) Radioactive risk assessment of beach sand along the coastline of Mediterranean Sea at El-Arish area North Sinai Egypt. Mar Pollut Bull 177:113494. https://doi.org/10.1016/j.marpolbul.2022.113494

    Article  CAS  PubMed  Google Scholar 

  2. Lasheen ESR, Rashwan MA, Osman H, Alamri S, Khandaker MU, Hanfi MY (2021) Radiological hazard evaluation of some egyptian magmatic rocks used as ornamental stone: petrography and natural radioactivity. Materials 14(23):7290. https://doi.org/10.3390/ma14237290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Singh VP, Badiger NM, Chanthima N, Kaewkhao J (2014) Evaluation of gamma-ray exposure buildup factors and neutron shielding for bismuth borosilicate glasses. Radiat Phys Chem 98:14–21. https://doi.org/10.1016/j.radphyschem.2013.12.029

    Article  CAS  Google Scholar 

  4. Lee S-Y, Kang I-A, Doh G-H et al (2008) Thermal and mechanical properties of wood flour/talc-filled polylactic acid composites: effect of filler content and coupling treatment. J Thermoplast Compos Mater 21:209–223. https://doi.org/10.1177/0892705708089473

    Article  CAS  Google Scholar 

  5. Al-Saleh Wafa M, Mai RH, Dahi MI, Sayyed Haifa M, Almutairi IH, Saleh Mohamed Elsafi (2023) Comprehensive study of the radiation shielding feature of polyester polymers impregnated with iron filings. e-Polymers. https://doi.org/10.1515/epoly-2023-0096

    Article  Google Scholar 

  6. Chandrika BM, Manjunatha HCS, Sridhar KN et al (2023) Synthesis, physical, optical and radiation shielding properties of Barium-Bismuth Oxide Borate-A novel nanomaterial. Nucl Eng Technol. https://doi.org/10.1016/j.net.2023.01.012

    Article  Google Scholar 

  7. Sayyed MI (2023) Radiation Shielding Performance of Amorphous Silicates in the System SiO2-Na2O–RO (R = Cd, Pb or Zn). Silicon. https://doi.org/10.1007/s12633-023-02671-5

    Article  Google Scholar 

  8. Sallam OI, Madbouly AM, Elalaily NA, Ezz-Eldin FM (2020) Physical properties and radiation shielding parameters of bismuth borate glasses doped transition metals. J Alloys Compd 843:156056. https://doi.org/10.1016/j.jallcom.2020.156056

    Article  CAS  Google Scholar 

  9. Sayyed MI (2023) Investigation of radiation shielding features of lithium cadmium silicate glasses. Silicon. https://doi.org/10.1007/s12633-023-02616-y

    Article  Google Scholar 

  10. Sazirul I, Mahmoud KA, Sayyed MI, Bünyamin A, Rahman Md M, Mollah AS (2020) Study on the radiation attenuation properties of locally available bees-wax as a tissue equivalent bolus material in radiotherapy. Radiat Phys Chem 172:108559. https://doi.org/10.1016/j.radphyschem.2019.108559

    Article  CAS  Google Scholar 

  11. Sayyed MI, Lakshminarayana G, Mahdi MA (2017) Evaluation of radiation shielding parameters for optical materials. Chalcogenide Lett 14(2):43–47

    CAS  Google Scholar 

  12. Sayyed MI, El-Mesady IA, Abouhaswa AS et al (2019) Comprehensive study on the structural, optical, physical and gamma photon shielding features of B2O3-Bi2O3-PbO-TiO2 glasses using WinXCOM and Geant4 code. J Mol Struct 1197:656–665. https://doi.org/10.1016/j.molstruc.2019.07.100

    Article  CAS  Google Scholar 

  13. Mahmoud KG, Alqahtani MS, Tashlykov OL et al (2023) The influence of heavy metallic wastes on the physical properties and gamma-ray shielding performance of ordinary concrete: Experimental evaluations. Radiat Phys Chem 206:110793. https://doi.org/10.1016/j.radphyschem.2023.110793

    Article  CAS  Google Scholar 

  14. Yılmaz SN, Güngör A, Özdemir T (2020) The investigations of mechanical, thermal and rheological properties of polydimethylsiloxane/bismuth (III) oxide composite for X/Gamma ray shielding. Radiat Phys Chem 170:108649. https://doi.org/10.1016/j.radphyschem.2019.108649

    Article  CAS  Google Scholar 

  15. Bhattacharya M (2016) Polymer nanocomposites—a comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials 9:262. https://doi.org/10.3390/ma9040262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Turner TA, Pickering SJ, Warrior NA (2011) Development of recycled carbon fibre moulding compounds – Preparation of waste composites. Compos B Eng 42:517–525. https://doi.org/10.1016/j.compositesb.2010.11.010

    Article  CAS  Google Scholar 

  17. Dong M, Xue X, Kumar A et al (2018) A novel method of utilization of hot dip galvanizing slag using the heat waste from itself for protection from radiation. J Hazard Mater 344:602–614. https://doi.org/10.1016/j.jhazmat.2017.10.066

    Article  CAS  PubMed  Google Scholar 

  18. Adeosun SO, Lawal GI, Balogun SA, Akpan EI (2012) Review of green polymer nanocomposites. J Miner Mater Charact Eng 11:385–416. https://doi.org/10.4236/jmmce.2012.114028

    Article  Google Scholar 

  19. El-Mallawany R, Sayyed MI, Dong MG, Rammah YS (2018) Simulation of radiation shielding properties of glasses contain PbO. Radiat Phys Chem 151:239–252. https://doi.org/10.1016/j.radphyschem.2018.06.035

    Article  CAS  Google Scholar 

  20. Zadegan S, Hosainalipour M, Rezaie HR et al (2011) Synthesis and biocompatibility evaluation of cellulose/hydroxyapatite nanocomposite scaffold in 1-n-allyl-3-methylimidazolium chloride. Mater Sci Eng, C 31:954–961. https://doi.org/10.1016/j.msec.2011.02.021

    Article  CAS  Google Scholar 

  21. Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82:337–345. https://doi.org/10.1016/j.carbpol.2010.04.063

    Article  CAS  Google Scholar 

  22. Abouhaswa AS, Kavaz E (2020) A novel B2O3-Na2O-BaO-HgO glass system: Synthesis, physical, optical and nuclear shielding features. Ceram Int 46:16166–16177. https://doi.org/10.1016/j.ceramint.2020.03.172

    Article  CAS  Google Scholar 

  23. Albarzan Badriah, Hanfi Mohamed Y, Almuqrin Aljawhara H, Sayyed MI, Alsafi Haneen M, Mahmoud KA (2021) The influence of titanium dioxide on silicate-based glasses: an evaluation of the mechanical and radiation shielding properties. Materials 14(12):3414. https://doi.org/10.3390/ma14123414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rammah YS, Al-Buriahi MS, El-Agawany FI et al (2020) Investigation of mechanical features and gamma-ray shielding efficiency of ternary TeO2-based glass systems containing Li2O, Na2O, K2O, or ZnO. Ceram Int 46:27561–27569. https://doi.org/10.1016/j.ceramint.2020.07.248

    Article  CAS  Google Scholar 

  25. Alsaif NAM, Alotiby M, Hanfi MY, Sayyed MI, Mahmoud KA, Alotaibi BM, Alyousef HA, Al-Hadeethi Y (2021) A comprehensive study on the optical mechanical and radiation shielding properties of the TeO2–Li2O–GeO2 glass system. J Mater Sci Mater Electron 32(11):15226–15241. https://doi.org/10.1007/s10854-021-06074-3

  26. Hanfi MY, Sakr AK, Ismail AM, Atia BM, Alqahtani MS, Mahmoud KA (2023) Physical characterization and radiation shielding features of B2O3As2O3 glass ceramic. Nucl Eng Technol 55(1):278–284. https://doi.org/10.1016/j.net.2022.09.006

    Article  CAS  Google Scholar 

  27. Arunkumar S, Naseer KA, Yoosuf Ameen M et al (2023) Physical, structural, optical, and radiation screening studies on Dysprosium ions doped Niobium Bariumtelluroborate glasses. Radiat Phys Chem 204:110669. https://doi.org/10.1016/j.radphyschem.2022.110669

    Article  CAS  Google Scholar 

  28. Mahmoud KA, Lacomme E, Sayyed MI et al (2020) Investigation of the gamma ray shielding properties for polyvinyl chloride reinforced with chalcocite and hematite minerals. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e03560

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sayyed MI, Hanfi MY, Mahmoud KA, Abdelaziem A (2022) Theoretical Investigation of the radiation-protection properties of the CBS glass family. Optik 258:168851. https://doi.org/10.1016/j.ijleo.2022.168851

    Article  CAS  Google Scholar 

  30. X-5 Monte Carlo Team (2003) MCNP—a general monte carlo n-particle transport code, Version 5. La-Ur-03–1987 II

  31. Abouhaswa AS, Sayyed MI, Altowyan AS et al (2020) Synthesis, structural, optical and radiation shielding features of tungsten trioxides doped borate glasses using Monte Carlo simulation and phy-X program. J Non Cryst Solids. https://doi.org/10.1016/j.jnoncrysol.2020.120134

    Article  Google Scholar 

  32. Kilic G, Ilik E, Mahmoud KA et al (2021) The role of B2O3 on the structural, thermal, and radiation protection efficacy of vanadium phosphate glasses. Appl Phys A Mater Sci Process. https://doi.org/10.1007/s00339-021-04409-9

    Article  Google Scholar 

  33. Mahmoud ME, El-Khatib AM, Badawi MS et al (2018) Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites. Radiat Phys Chem 145:160–173. https://doi.org/10.1016/j.radphyschem.2017.10.017

    Article  CAS  Google Scholar 

  34. Sharma A, Sayyed MI, Agar O et al (2020) Photon-shielding performance of bismuth oxychloride-filled polyester concretes. Mater Chem Phys 241:122330. https://doi.org/10.1016/j.matchemphys.2019.122330

    Article  CAS  Google Scholar 

  35. Mahmoud ME, El-Khatib AM, Badawi MS et al (2018) Recycled high-density polyethylene plastics added with lead oxide nanoparticles as sustainable radiation shielding materials. J Clean Prod 176:276–287. https://doi.org/10.1016/j.jclepro.2017.12.100

    Article  CAS  Google Scholar 

  36. Hou Y, Li M, Gu Y et al (2018) Gamma ray shielding property of tungsten powder modified continuous basalt fiber reinforced epoxy matrix composites. Polym Compos 39:E2106–E2115. https://doi.org/10.1002/pc.24469

    Article  CAS  Google Scholar 

  37. Farnaz Nasehi MII (2019) Evaluation of X and gamma-rays attenuation parameters for polyacrylamide and ZnO composites as ligh. J Nucl Med Radiat Ther 10:1000404

    Google Scholar 

  38. Bagheri K, Razavi SM, Ahmadi SJ et al (2018) Thermal resistance, tensile properties, and gamma radiation shielding performance of unsaturated polyester/nanoclay/PbO composites. Radiat Phys Chem 146:5–10. https://doi.org/10.1016/j.radphyschem.2017.12.024

    Article  CAS  Google Scholar 

  39. Atta ERZKM, Madbouly AM (2015) Research article study on polymer clay layered nanocomposites as shielding materials for ionizing radiation. Int J Recent Sci Res 6:4263–4269

    Google Scholar 

  40. Aldhuhaibat MJR, Amana MS, Jubier NJ, Salim AA (2021) Improved gamma radiation shielding traits of epoxy composites: Evaluation of mass attenuation coefficient, effective atomic and electron number. Radiat Phys Chem 179:109183. https://doi.org/10.1016/j.radphyschem.2020.109183

    Article  CAS  Google Scholar 

  41. Akman F, Kaçal MR, Almousa N et al (2020) Gamma-ray attenuation parameters for polymer composites reinforced with BaTiO3 and CaWO4 compounds. Prog Nucl Energy 121:103257. https://doi.org/10.1016/j.pnucene.2020.103257

    Article  CAS  Google Scholar 

  42. Mahmoud KA, Tashlykov OL, Kropachev Y et al (2023) A close look for the γ-ray attenuation capacity and equivalent dose rate form composites based epoxy resin: An experimental study. Radiat Phys Chem 212:111063. https://doi.org/10.1016/j.radphyschem.2023.111063

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RP23046).

Author information

Authors and Affiliations

Authors

Contributions

SA and MJA contributed to validation, investigation, and supervision. MWM contributed to conceptualization, investigation, validation, and supervision. KAM and MYH contributed to conceptualization, data curation, formal analysis, investigation, methodology, software, validation, visualization, writing—original draft, and writing—review & editing.

Corresponding author

Correspondence to Mohamed Y. Hanfi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alanazi, S., Hanfi, M.Y., Marashdeh, M.W. et al. Impact of heavy metal waste on gamma ray shielding performance of epoxy resin: an experimental investigation. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05273-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05273-2

Keywords

Navigation