Skip to main content
Log in

Basalt fabric/(3-aminopropyl) triethoxysilane modified epoxy laminates reinforced with nano-silica, OMMT and GNP: mechanical and dynamic mechanical studies

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In formulating high-performance polymer composites, bonding is highly crucial. Typically the issue of bonding arises when fibers and fillers that are primarily inorganic are reinforced to organic polymers. In order to address this kind of issue, normally a coupling agent is employed as a "molecular bridge" among the ingredients of the laminates. In the realm of polymer composite studies, the conventional method of fibers and fillers modification has yielded positive results. Unlike these studies, the present work is aimed at employing a matrix modification approach for achieving improved bonding. Given these perspectives, epoxy is modified using a silane-coupling agent (3-aminopropyl)triethoxysilane and reinforced with basalt fabric consisting of nine layers. The laminates are formulated using the vacuum infusion technique and the impact of the modification process is evaluated through morphological, mechanical, and dynamic mechanical characterizations. The results indicate that the modification of epoxy has led to an increase in tensile properties, impact energy, and several attributes of dynamic mechanical properties of the laminate. The modified epoxy laminate is further enhanced by the incorporation of nano-fillers, viz. nano-silica, organically modified montmorillonite (OMMT), and graphene nanoplatelets (GNPs) at a concentration of 1 wt.%. The OMMT-loaded modified epoxy laminate has exhibited the most significant improvements among all across various properties. These findings demonstrate that the chemical enrichment of epoxy through APTES modification and the incorporation of nano-fillers enhance the performance of the laminates by improving their adhesion strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data will be available by corresponding author upon reasonable request.

References

  1. Mutlu G, Yildirim F, Ulus H, Eskizeybek V (2023) Coating graphene nanoplatelets onto carbon fabric with controlled thickness for improved mechanical performance and EMI shielding effectiveness of carbon/epoxy composites. Eng Fract Mech 284:109271

    Article  Google Scholar 

  2. Ulus H et al (2022) Effect of long-term stress aging on aluminum-BFRP hybrid adhesive joint’s mechanical performance: static and dynamic loading scenarios. Polym Compos 43:5301–5308

    Article  CAS  Google Scholar 

  3. Ulus H, Kaybal HB (2023) Out-of-plane static loading performance of lightweight aluminum/composite FML structures for retrofitting applications: Effectiveness of bonded, bolted and hybrid bonded/bolted joining techniques under hydrothermal aging environment. Constr Build Mater 403:133124

    Article  CAS  Google Scholar 

  4. Ulus H et al (2022) Fracture and dynamic mechanical analysis of seawater aged aluminum-BFRP hybrid adhesive joints. Eng Fract Mech 268:108507

    Article  Google Scholar 

  5. Pandian CKA, Jailani HS (2018) Investigation of viscoelastic attributes and vibrational characteristics of natural fabrics-incorporated hybrid laminate beams. Polym Bull 75:1997–2014

    Article  Google Scholar 

  6. Erden S et al (2010) Enhancement of the mechanical properties of glass/polyester composites via matrix modification glass/polyester composite siloxane matrix modification. Fiber Polym 11:732–737

    Article  CAS  Google Scholar 

  7. Fonseca VM et al (2004) Evaluation of the mechanical properties of sisal–polyester composites as a function of the polyester matrix formulation. J Appl Polym Sci 94:1209–1217

    Article  CAS  Google Scholar 

  8. Ulus H et al (2019) Enhanced salty water durability of halloysite nanotube reinforced epoxy/basalt fiber hybrid composites. Fiber Polym 20:2184–2199

    Article  CAS  Google Scholar 

  9. Liu Y et al (2012) Role of matrix modification on interlaminar shear strength of glass fibre/epoxy composites. Compos Part B-Eng 43:95–98

    Article  CAS  Google Scholar 

  10. Yang J et al (2013) Matrix modification with silane coupling agent for carbon fiber reinforced epoxy composites. Fiber Polym 14:759–766

    Article  CAS  Google Scholar 

  11. Kaynak C, Orgun O, Tincer T (2005) Matrix and interface modification of short carbon fiber-reinforced epoxy. Polym Test 24:455

    Article  CAS  Google Scholar 

  12. Jannerfeldt G, Törnqvist R, Rambert N, Boogh L, Månson JAE (2001) Matrix modification for improved reinforcement effectiveness in polypropylene/glass fibre composites. Appl Compos Mater 8:327–341

    Article  CAS  Google Scholar 

  13. Rajan R, Rainosalo E, Thomas SP, Ramamoorthy SK, Zavašnik J, Vuorinen J, Skrifvars M (2018) Modification of epoxy resin by silane-coupling agent to improve tensile properties of viscose fabric composites. Polym Bull 75:167–195

    Article  CAS  Google Scholar 

  14. Rajan R, Rainosalo E, Ramamoorthy SK, Thomas SP, Zavašnik J, Vuorinen J, Skrifvars M (2018) Mechanical, thermal, and burning properties of viscose fabric composites: influence of epoxy resin modification. J Appl Polym Sci 135:46673

    Article  Google Scholar 

  15. Dorigato A, Pegoretti A (2012) Fatigue resistance of basalt fibers-reinforced laminates. J Compos Mater 46(15):1773–1785

    Article  Google Scholar 

  16. Mohit H, Nivedha B, Ashok M (2022) Natural/inorganic fillers reinforced Kevlar fabric based polymer composites. Nova Science Publisher, New York

    Google Scholar 

  17. Pandian CKA, Jailani HS (2022) Formulation and characterisation of jute fabric–linen fabric–fumed silica– epoxy hybrid laminates. J Text Inst 113:151–158

    Article  Google Scholar 

  18. Fiore V, Di Bella G, Valenza A (2011) Glass–basalt/epoxy hybrid composites for marine applications. Mater Des 32(4):2091–2099

    Article  CAS  Google Scholar 

  19. Ilangovan S, Kumaran SS, Naresh K (2020) Effect of nanoparticles loading on free vibration response of epoxy and filament winding basalt/epoxy and E-glass/epoxy composite tubes: experimental, analytical and numerical investigations. Mater Res Express 7:025007

    Article  CAS  Google Scholar 

  20. Aswathnarayan MS, Muniraju M, Reddappa HN, Rudresh BM (2020) Synergistic effect of nano graphene on the mechanical behaviour of glass-epoxy polymer composites. Mater Today Proc 20(2):177–184

    Article  CAS  Google Scholar 

  21. Mahbod A, Panahi-Sarmad M, Mir Mohamad SG, Arjmand M, Dehghan P, Amirkiai A (2020) Microstructural design for enhanced mechanical property and shape memory behavior of polyurethane nanocomposites: role of carbon nanotube, montmorillonite, and their hybrid fillers. Polym Test 89:106642

    Article  Google Scholar 

  22. Manikandan V et al (2012) Investigation on effect of surface modification in mechanical properties of basalt fiber reinforced polymer composites. Compos Part B-Eng 43:812–818

    Article  CAS  Google Scholar 

  23. Raajeshkrishna C, Chandramohan P, Saravanan D (2019) Effect of surface treatment and stacking sequence on mechanical properties of basalt/glass epoxy composites. Polym Polym Compos 27(4):201–214

    CAS  Google Scholar 

  24. Sun W et al (2023) Investigation on cryogenic mechanical properties of basalt fiber-reinforced epoxy composites. Cryogenics 132:103684

    Article  CAS  Google Scholar 

  25. Li X et al (2022) Study on the mechanical and toughness behavior of epoxy nano-composites with zero-dimensional and two-dimensional nano-fillers. Polymers 14:3618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Frigione M, Lettieri M (2020) Recent advances and trends of nanofilled/nanostructured epoxies. Materials 13:3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Amirabadi-Zadeh M, Khosravi H, Tohidlou E (2022) Efficient reinforcement of jute fiber/epoxy composite with Nanosilica@Graphene hybrid filler. J Ind Text 51(2):3119S-3130S

    Article  CAS  Google Scholar 

  28. Vinay SS, Sanjay MR, Siengchin S, Venkatesh CV (2021) Effect of Al2O3 nanofillers in basalt/epoxy composites: mechanical and tribological properties. Polym Compos 42:727–174

    Article  Google Scholar 

  29. Manjunatha CM, Taylor AC, Kinloch AJ, Sprenger S (2010) The tensile fatigue behaviour of a silica nanoparticle-modified glass fibre reinforced epoxy composite. Compos Sci Technol 70(1):193–199

    Article  CAS  Google Scholar 

  30. Chee SS, Jawaid M (2019) The effect of bi-functionalized MMT on morphology, thermal stability, dynamic mechanical, and tensile properties of epoxy/organoclay nanocomposites. Polymers 11(12):2012

    Article  CAS  Google Scholar 

  31. Khan A, Asiri AM, Jawaid M, Saba N (2020) Effect of cellulose nano fibers and nano clays on the mechanical, morphological, thermal and dynamic mechanical performance of kenaf/epoxy composites. Carbohyd Polym. 239:116248

    Article  CAS  Google Scholar 

  32. Wang B, Qi N, Gong W, Li XW, Zhen YP (2007) Study on the microstructure and mechanical properties for epoxy resin/montmorillonite nanocomposites by positron. Radiat Phys Chem 76(2):146–149

    Article  CAS  Google Scholar 

  33. Sookyung U, Nakason C, Venneman N, Thaijaroend W (2016) Influence concentration of modifying agent on properties of natural rubber/organoclay nanocomposites. Polym Test 54:223–232

    Article  CAS  Google Scholar 

  34. Pandian CKA, Jailani HS (2019) Dynamic and vibrational characterization of natural fabrics incorporated hybrid composites using industrial waste silica fumes. Int J Polym Anal Ch 24(8):721–730

    Article  Google Scholar 

  35. Krishnudu DM, Sreeramulu D, Reddy PV (2020) A study of filler content influence on dynamic mechanical and thermal characteristics of coir and luffa cylindrica reinforced hybrid composites. Constr Build Mater 251:119040

    Article  Google Scholar 

  36. Zhao Z, Gao Y, Li C (2021) Experimental study on dynamic properties of a recycled composite sleeper and its theoretical model. Symmetry 13(01):17

    Article  Google Scholar 

  37. Neubauer M, Pohl M, Kucher M, Böhm R, Höschler K, Modler N (2022) DMA of TPU films and the modelling of their viscoelastic properties for noise reduction in jet engines. Polymers 14:5285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. He L, Xia F, Wang Y, Yuan J, Chen D, Zheng J (2021) Mechanical and dynamic mechanical properties of the amino silicone oil emulsion modified ramie fiber reinforced composites. Polymers 13:4083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bindu P, Thomas S (2013) Viscoelastic behavior and reinforcement mechanism in rubber nanocomposites in the vicinity of spherical nanoparticles. J Phys Chem B 117:12632–12648

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

CKAP—The work done by this author involved a comprehensive analysis of the research process and the compilation of the obtained results. MMD—The author conducted a comprehensive and thorough assessment throughout the course of the research and journal paper procedure. MT—This author conceived the concept of the research work and directed it toward a thorough technical evaluation. HSJ—This author was responsible for the drafting and compilation of the research paper, which involved the creation of plots and sketches.

Corresponding author

Correspondence to M. Thirumurugan.

Ethics declarations

Conflict of interest

The authors confirm that there was no external funding, and that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arvinda Pandian, C.K., Dharmaraj, M.M., Thirumurugan, M. et al. Basalt fabric/(3-aminopropyl) triethoxysilane modified epoxy laminates reinforced with nano-silica, OMMT and GNP: mechanical and dynamic mechanical studies. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05261-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05261-6

Keywords

Navigation