Skip to main content
Log in

Carbon fiber-reinforced, activated carbon-embedded copper oxide nanoparticles/epoxy hybrid composites for EMI shielding in aircraft applications

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The present work aimed at the development of lightweight EMI shielding epoxy-based composites with high mechanical strength for aircraft application. In this regard, we prepared CuO-activated carbon nanoparticles by the simple co-precipitation method. The different weight ratios (5, 10 and 15 wt%) of the CuO-activated carbon/epoxy composites are prepared, and their mechanical and EMI shielding properties have been studied. To achieve high mechanical and EMI shielding efficiency, the optimum composition of CuO-activated carbon/epoxy composite matrix is reinforced with the carbon fiber. The carbon fiber-reinforced CuO-activated carbon/epoxy hybrid composite exhibits high thermal and mechanical properties. The synergistic effect of carbon fiber and the 10 wt% CuO-activated carbon/epoxy composite matrix with excellent dielectric and ohmic losses delivered the highest electromagnetic interference shielding effectiveness value of 52.02 dB at 11.48 GHz. Hence, the composite with superior thermal and mechanical properties can be used as a prominent electromagnetic shielding material in aircraft application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Turczyn R, Krukiewicz K, Katunin A, Sroka J, Sul P (2020) Fabrication and application of electrically conducting composites for electromagnetic interference shielding of remotely piloted aircraft systems. Compos Struct 232:111498. https://doi.org/10.1016/j.compstruct.2019.111498

    Article  Google Scholar 

  2. Mishra R, Thomas M, Abraham J, Joseph K, Thomas S (2018) Electromagnetic interference shielding materials for aerospace application: fundamentals, properties, and application: a state of the art. 327–365. https://doi.org/10.1002/9781119128625.ch15

  3. Parveez B, Kittur MI, Badruddin IA, Kamangar S, Hussien M, Umarfarooq MA (2022) Scientific advancements in composite materials for aircraft applications: a review. Polymers. https://doi.org/10.3390/polym14225007

    Article  PubMed  PubMed Central  Google Scholar 

  4. Biswas S, Kar GP, Bose S (2015) Tailor-made distribution of nanoparticles in blend structure toward outstanding electromagnetic interference shielding. ACS Appl Mater Interfaces 7(45):25448–25463. https://doi.org/10.1021/acsami.5b08333

    Article  CAS  PubMed  Google Scholar 

  5. Azadmanjiri J, Hojati-Talemi P, Simon GP, Suzuki K, Selomulya C (2011) Synthesis and electromagnetic interference shielding properties of iron oxide/polypyrrole nanocomposites. Polym Eng Sci 51(2):247–253. https://doi.org/10.1002/pen.21813

    Article  CAS  Google Scholar 

  6. Raimondo M, Naddeo C, Vertuccio L, Lafdi K, Sorrentino A, Guadagno L (2019) Carbon-based aeronautical epoxy nanocomposites: effectiveness of atomic force microscopy (AFM) in investigating the dispersion of different carbonaceous nanoparticles. Polymers. https://doi.org/10.3390/polym11050832

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bhat BN (2018) Table of contents. In: Biliyar NB (ed) Aerospace Materials and Applications. Progress in Astronautics and Aeronautics. American Institute of Aeronautics and Astronautics, Inc., pp i–xiv. https://doi.org/10.2514/5.9781624104893.0000.0000.

  8. Rohini R, Verma K, Bose S (2018) Interfacial architecture constructed using functionalized MWNT resulting in enhanced emi shielding in epoxy/carbon fiber composites. ACS Omega 3(4):3974–3982. https://doi.org/10.1021/acsomega.8b00218

    Article  CAS  PubMed Central  Google Scholar 

  9. Huang X, Dai B, Ren Y, Xu J, Zhu P (2015) Preparation and study of electromagnetic interference shielding materials comprised of Ni-Co coated on web-like biocarbon nanofibers via electroless deposition. J Nanomater 2015:e320306. https://doi.org/10.1155/2015/320306

    Article  CAS  Google Scholar 

  10. Zhu S et al (2021) Simultaneously improved mechanical and electromagnetic interference shielding properties of carbon fiber fabrics/epoxy composites via interface engineering. Compos Sci Technol 207:108696. https://doi.org/10.1016/j.compscitech.2021.108696

    Article  CAS  Google Scholar 

  11. Park J, Hu X, Torfeh M, Okoroanyanwu U, Arbabi A, Watkins JJ (2020) Exceptional electromagnetic shielding efficiency of silver coated carbon fiber fabrics via a roll-to-roll spray coating process. J Mater Chem C 8(32):11070–11078. https://doi.org/10.1039/D0TC02048F

    Article  CAS  Google Scholar 

  12. Ma Y, Zhuang Y, Li C, Shen X, Zhang L (2022) Improving electromagnetic interference shielding while retaining mechanical properties of carbon fiber-based composites by introducing carbon nanofiber sheet into laminate structure. Polymers 14(9):1658. https://doi.org/10.3390/polym14091658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ilyas S, Heryanto H, Tahir D (2021) Correlation between structural and optical properties of CuO/carbon nanoparticle in supports the photocatalytic performance and attenuate the electromagnetic wave. J Environ Chem Eng 9(1):104670. https://doi.org/10.1016/j.jece.2020.104670

    Article  CAS  Google Scholar 

  14. Bibi H et al (2021) Green synthesis of multifunctional carbon coated copper oxide nanosheets and their photocatalytic and antibacterial activities. Sci Rep 11(1):10781. https://doi.org/10.1038/s41598-021-90207-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maruthi N, Faisal M, Raghavendra N, Prasanna BP, Manohara SR, Revanasiddappa M (2021) Anticorrosive polyaniline-coated copper oxide (PANI/CuO) nanocomposites with tunable electrical properties for broadband electromagnetic interference shielding. Colloids Surf Physicochem Eng Asp 621:126611. https://doi.org/10.1016/j.colsurfa.2021.126611

    Article  CAS  Google Scholar 

  16. Rani P, Ahamed MB, Deshmukh K (2020) Significantly enhanced electromagnetic interference shielding effectiveness of montmorillonite nanoclay and copper oxide nanoparticles based polyvinylchloride nanocomposites. Polym Test 91:106744. https://doi.org/10.1016/j.polymertesting.2020.106744

    Article  CAS  Google Scholar 

  17. Subramanian J, Vinoth Kumar S, Venkatachalam G, Gupta M, Singh R (2021) An Investigation of EMI shielding effectiveness of organic polyurethane composite reinforced with MWCNT-CuO-bamboo charcoal nanoparticles. J Electron Mater 50(3):1282–1291. https://doi.org/10.1007/s11664-020-08622-9

    Article  CAS  Google Scholar 

  18. Bhavyasree PG, Xavier TS (2020) Green synthesis of Copper Oxide/Carbon nanocomposites using the leaf extract of Adhatoda vasica Nees, their characterization and antimicrobial activity. Heliyon 6(2):e03323. https://doi.org/10.1016/j.heliyon.2020.e03323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen G et al (2021) Facile fabrication of copper oxide modified activated carbon composite for efficient CO2 adsorption. Korean J Chem Eng 38(1):46–54. https://doi.org/10.1007/s11814-020-0684-1

    Article  CAS  Google Scholar 

  20. Bhat TS et al (2022) Activated carbon mediated hydrothermally synthesized CuO thin films for electrochemical supercapacitors. ECS J Solid State Sci Technol 11(6):063003. https://doi.org/10.1149/2162-8777/ac7074

    Article  Google Scholar 

  21. Elango M, Deepa M, Subramanian R, Mohamed Musthafa A (2018) Synthesis, characterization, and antibacterial activity of Polyindole/Ag–Cuo nanocomposites by reflux condensation method. Polym Plast Technol Eng 57(14):1440–1451. https://doi.org/10.1080/03602559.2017.1410832

    Article  CAS  Google Scholar 

  22. Arun KJ, Batra AK, Krishna A, Bhat K, Aggarwal MD, Francis JP (2015) Surfactant free hydrothermal synthesis of copper oxide nanoparticles. Am J Mater Sci 5(3A):36–38

    Google Scholar 

  23. Davari A, Hakimzadeh V, Mahdian E, Shahidi-Noghabi M (2021) Synthesis and characterization of copper oxide nanoparticles using aqueous extract of Iranian Violaceae flower. Harčova Nauka Ì Tehnol. https://doi.org/10.15673/fst.v15i3.2178

    Article  Google Scholar 

  24. Pauldurai J, Perumal AM, Jeyaraja D, Amal PVR (2021) Facile synthesis of spherical flake-shaped CuO nanostructure and its characterization towards solar cell application. Walailak J Sci Technol WJST. https://doi.org/10.48048/wjst.2021.9944

    Article  Google Scholar 

  25. Lakkaboyana SK, Khantong S, Asmel NK, Yuzir A, Wan Yaacob WZ (2019) Synthesis of copper oxide nanowires-activated carbon (AC@CuO-NWs) and applied for removal methylene blue from aqueous solution: kinetics, isotherms, and thermodynamics. J Inorg Organomet Polym Mater 29(5):1658–1668. https://doi.org/10.1007/s10904-019-01128-w

  26. Zanghellini B et al (2021) Solvent-free ultrasonic dispersion of nanofillers in epoxy matrix. Polymers. https://doi.org/10.3390/polym13020308

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang X et al (2013) Iron-core carbon-shell nanoparticles reinforced electrically conductive magnetic epoxy resin nanocomposites with reduced flammability. RSC Adv 3(24):9453–9464. https://doi.org/10.1039/C3RA41233D

    Article  CAS  Google Scholar 

  28. Renuga D, Jeyasundari J, Shakthi Athithan AS, Jacob YBA (2020) Synthesis and characterization of copper oxide nanoparticles using Brassica oleracea var. italic extract for its antifungal application. Mater Res Express 7(4):045007. https://doi.org/10.1088/2053-1591/ab7b94

    Article  CAS  Google Scholar 

  29. Lakkaboyana SK, Khantong S, Asmel NK, Yuzir A, Wan Yaacob WZ (2019) Synthesis of copper oxide nanowires-activated carbon (AC@CuO-NWs) and applied for removal methylene blue from aqueous solution: kinetics, isotherms, and thermodynamics. J Inorg Organomet Polym Mater 29(5): Art. no. 5

  30. Bouazizi N, Bargougui R, Oueslati A, Benslama R (2014) Effect Of synthesis time on structural, optical and electrical properties of CuO nanoparticles synthesized by reflux condensation method. Adv Mater Lett 2015:158–164. https://doi.org/10.5185/amlett.2015.5656

    Article  CAS  Google Scholar 

  31. Lateef ZK, Alzubaidy MH, Jubier NJ (2017) Preparation, characterization and optical properties of copper oxide thin films. 3(8)

  32. Sabaa MW, Abdelhakim M, Soliman SMA (2020) Characterization and application of cured epoxy resin reinforced with montmorillonite. Bull Mater Sci 43(1):126. https://doi.org/10.1007/s12034-020-02100-y

    Article  CAS  Google Scholar 

  33. Zoolfakar A, Abdul Rani R, Morfa A, O’Mullane A, Kalantar-zadeh K (2014) Nanostructured copper oxide semiconductors: a perspective on materials, synthesis methods and applications. J Mater Chem C. https://doi.org/10.1039/C4TC00345D

    Article  Google Scholar 

  34. Yogeshwaran S, Natrayan L, Rajaraman S, Parthasarathi S, Nestro S (2021) Experimental investigation on mechanical properties of Epoxy/graphene/fish scale and fermented spinach hybrid bio composite by hand lay-up technique. Mater Today Proc 37:1578–1583. https://doi.org/10.1016/j.matpr.2020.07.160

    Article  CAS  Google Scholar 

  35. Betancur Lopera A, Garcia A, Pérez F (2019) Thermal stability and chemical analysis of hybrid materials reinforced with graphene oxide. J Phys Conf Ser 1219:012003. https://doi.org/10.1088/1742-6596/1219/1/012003

    Article  CAS  Google Scholar 

  36. Tahir D et al (2021) Enhanced visible-light absorption of Fe 2 O 3 covered by activated carbon for multifunctional purposes: tuning the structural, electronic, optical, and magnetic properties. ACS Omega 6(42):28334–28346. https://doi.org/10.1021/acsomega.1c04526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gemi L, Yazman S, Uludağ M, Dispinar D, Tiryakioḡlu M (2017) The effect of 0.5 wt% additions of carbon nanotubes & ceramic nanoparticles on tensile properties of epoxy-matrix composites: a comparative study. 1:15–22. https://doi.org/10.35841/nanotechnology.1.2.15-22

  38. Hakim IA, Donaldson SL, Meyendorf NG, Browning CE (2017) Porosity Effects on interlaminar fracture behavior in carbon fiber-reinforced polymer composites. Mater Sci Appl. https://doi.org/10.4236/msa.2017.82011

    Article  Google Scholar 

  39. Mahdi TH, Islam ME, Hosur MV, Tcherbi-Narteh A, Jeelani S (2015) Characterization of mechanical and viscoelastic properties of SC-15 epoxy nanocomposites reinforced with multi-walled carbon nanotubes, nanoclay and binary nanoparticles. Presented at the ASME 2014 international mechanical engineering congress and exposition. American Society of Mechanical Engineers Digital Collection. https://doi.org/10.1115/IMECE2014-36176

  40. Baptista R, Mendão A, Guedes M, Marat-Mendes R (2016) An experimental study on mechanical properties of epoxy-matrix composites containing graphite filler. Procedia Struct Integr 1:74–81. https://doi.org/10.1016/j.prostr.2016.02.011

    Article  Google Scholar 

  41. Öner GA (2022) Flexural strength and thermal properties of carbon black nanoparticle reinforced epoxy composites obtained from waste tires. Open Chem 20(1):863–872. https://doi.org/10.1515/chem-2022-0197

    Article  CAS  Google Scholar 

  42. Ahmad W et al (2021) Development of waste polystyrene-based copper oxide/reduced graphene oxide composites and their mechanical, electrical and thermal properties. Nanomaterials. https://doi.org/10.3390/nano11092372

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hernandez D, Soufen C, Orlandi M (2017) Carbon fiber reinforced polymer and epoxy adhesive tensile test failure analysis using scanning electron microscopy. Mater Res. https://doi.org/10.1590/1980-5373-mr-2017-0229

    Article  Google Scholar 

  44. Wang L, Ma Z, Zhang Y, Chen L, Cao D, Gu J (2021) Polymer-based EMI shielding composites with 3D conductive networks: A mini-review. SusMat 1(3):413–431. https://doi.org/10.1002/sus2.21

    Article  CAS  Google Scholar 

  45. Praveen M et al (2022) The role of magnetic nano CoFe2O4 and conductive MWCNT/graphene in LDPE-based composites for electromagnetic interference shielding in X-band. Diam Relat Mater 130:109501. https://doi.org/10.1016/j.diamond.2022.109501

    Article  CAS  Google Scholar 

  46. Banerjee P, Bhattacharjee Y, Bose S (2020) Lightweight epoxy-based composites for EMI shielding applications. J Electron Mater 49(3):1702–1720. https://doi.org/10.1007/s11664-019-07687-5

    Article  CAS  Google Scholar 

  47. Sushmita K, Madras G, Bose S (2021) The journey of polycarbonate-based composites towards suppressing electromagnetic radiation. Funct Compos Mater 2(1):13. https://doi.org/10.1186/s42252-021-00025-1

    Article  CAS  Google Scholar 

  48. Zeng J, Xu J, Tao P, Hua W (2009) Ferromagnetic and microwave absorption properties of copper oxide-carbon fiber composites. J Alloys Compd 487(1):304–308. https://doi.org/10.1016/j.jallcom.2009.07.112

    Article  CAS  Google Scholar 

  49. Rani P, Basheer Ahamed M, Deshmukh K (2021) Dielectric and electromagnetic interference shielding performance of graphene nanoplatelets and copper oxide nanoparticles reinforced polyvinylidenefluoride/poly(3,4-ethylenedioxythiophene)-block-poly (ethylene glycol) blend nanocomposites. Synth Met 282:116923. https://doi.org/10.1016/j.synthmet.2021.116923

  50. von Klemperer CJ, Maharaj D (2009) Composite electromagnetic interference shielding materials for aerospace applications. Compos Struct 91(4):467–472. https://doi.org/10.1016/j.compstruct.2009.04.013

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to VGST for the financial support. We sincerely thank RVCE for providing various facilities including the EMI shielding measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. A. Vishnumurthy or K. Natarajan.

Ethics declarations

Conflict of interest

All the authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anu, K.S., Vishnumurthy, K.A., Mahesh, A. et al. Carbon fiber-reinforced, activated carbon-embedded copper oxide nanoparticles/epoxy hybrid composites for EMI shielding in aircraft applications. Polym. Bull. (2024). https://doi.org/10.1007/s00289-023-05112-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-023-05112-w

Keywords

Navigation