Skip to main content
Log in

Exploring the potential use of natural polymers to enhance the performance of MXene/MOF-5 nanocarrier in loading and co-loading of doxorubicin and curcumin

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The adsorption of the two anti-cancer drugs doxorubicin (Dox) and curcumin (Cur) and also the simultaneous loading of both drugs on the surface of the innovative inorganic nanostructure MXene/MOF-5 (Mxn-MOF) were investigated using the molecular dynamics (MD) simulation method. In order to study the loading process in presence of polymer, two chitosan and alginate polymers were adsorbed on the carrier, and then the loading of drugs was investigated. Descriptors such as van der Waals energy (vdW), radial distribution function (RDF), and mean square displacement (MSD) were utilized. The values of interaction energies and RDF for the studied systems show that the adsorption of drug molecules in systems containing polymer is better than in pristine ones. It was found that the type of adsorbed polymer on the Mxn-Mof nanostructure has a noticeable effect on the interaction energy between Cur and Dox drugs with the carrier. The obtained results confirmed that increasing the number of drug molecules affects the loading and adsorption process. The analyses show that in the co-loading system, the most stable complex with an average binding energy of − 662.75 kJ/mol belongs to the Mxn-MOF-Chi-Dox/Cur system. The investigation of the studied systems confirms that in the presence of chitosan polymer, the adsorption of drug molecules is stronger in comparison with alginate polymer. The results obtained from this study provide detailed information about the interaction of polymeric drug compounds and nanocarriers at the atomic level, which can be useful in the design of intelligent drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Authors can confirm that all relevant data are included in the article and/or its supplementary information files.

References

  1. Ratemi E (2018) pH-Responsive polymers for drug delivery applications. In: Stimuli responsive polym. nanocarriers drug deliv. appl., vol 1. Elsevier, pp 121–141

  2. Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z (2011) Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J Control Release 152:2–12

    CAS  PubMed  Google Scholar 

  3. Hajebi S, Rabiee N, Bagherzadeh M, Ahmadi S, Rabiee M, Roghani-Mamaqani H, Tahriri M, Tayebi L, Hamblin MR (2019) Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater 92:1–18

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Nik AB, Zare H, Razavi S, Mohammadi H, Ahmadi PT, Yazdani N, Bayandori M, Rabiee N, Mobarakeh JI (2020) Smart drug delivery: capping strategies for mesoporous silica nanoparticles. Microporous Mesoporous Mater 299:110115

    Google Scholar 

  5. Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3:16–20

    CAS  PubMed  Google Scholar 

  6. Debbage P (2009) Targeted drugs and nanomedicine: present and future. Curr Pharm Des 15:153–172

    CAS  PubMed  Google Scholar 

  7. Kang Y, Zhang X-M, Zhang S, Ding L-S, Li B-J (2015) pH-responsive dendritic polyrotaxane drug-polymer conjugates forming nanoparticles as efficient drug delivery system for cancer therapy. Polym Chem 6:2098–2107

    CAS  Google Scholar 

  8. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23:4248–4253

    CAS  PubMed  Google Scholar 

  9. Ren CE, Hatzell KB, Alhabeb M, Ling Z, Mahmoud KA, Gogotsi Y (2015) Charge-and size-selective ion sieving through Ti3C2T × MXene membranes. J Phys Chem Lett 6:4026–4031

    CAS  PubMed  Google Scholar 

  10. Seh ZW, Fredrickson KD, Anasori B, Kibsgaard J, Strickler AL, Lukatskaya MR, Gogotsi Y, Jaramillo TF, Vojvodic A (2016) Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett 1:589–594

    CAS  Google Scholar 

  11. Tang Q, Zhou Z, Shen P (2012) Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J Am Chem Soc 134:16909–16916

    CAS  PubMed  Google Scholar 

  12. Wang H, Wu Y, Yuan X, Zeng G, Zhou J, Wang X, Chew JW (2018) Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: state-of-the-art progresses and challenges. Adv Mater 30:1704561

    Google Scholar 

  13. Huang K, Li Z, Lin J, Han G, Huang P (2018) Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem Soc Rev 47:5109–5124

    CAS  PubMed  Google Scholar 

  14. Lei J-C, Zhang X, Zhou Z (2015) Recent advances in MXene: preparation, properties, and applications. Front Phys 10:276–286

    Google Scholar 

  15. Rabiee N, Bagherzadeh M, Jouyandeh M, Zarrintaj P, Saeb MR, Mozafari M, Shokouhimehr M, Varma RS (2021) Natural polymers decorated MOF-MXene nanocarriers for co-delivery of doxorubicin/pCRISPR. ACS Appl Bio Mater 4:5106–5121

    CAS  PubMed  Google Scholar 

  16. Rasool K, Mahmoud KA, Johnson DJ, Helal M, Berdiyorov GR, Gogotsi Y (2017) Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci Rep 7:1–11

    Google Scholar 

  17. Mayerberger EA, Street RM, McDaniel RM, Barsoum MW, Schauer CL (2018) Antibacterial properties of electrospun Ti3C2Tz (MXene)/chitosan nanofibers. RSC Adv 8:35386–35394

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin H, Wang X, Yu L, Chen Y, Shi J (2017) Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett 17:384–391

    CAS  PubMed  Google Scholar 

  19. Feng W, Wang R, Zhou Y, Ding L, Gao X, Zhou B, Hu P, Chen Y (2019) Ultrathin molybdenum carbide MXene with fast biodegradability for highly efficient theory-oriented photonic tumor hyperthermia. Adv Funct Mater 29:1901942

    Google Scholar 

  20. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Hydrogen storage in microporous metal-organic frameworks. Science (80-) 300:1127–1129

    CAS  Google Scholar 

  21. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279

    CAS  Google Scholar 

  22. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science (80-.) 295:469–472

    CAS  Google Scholar 

  23. Hasan MM, Hossain MM, Chowdhury HK (2021) Two-dimensional MXene-based flexible nanostructures for functional nanodevices: a review. J Mater Chem A 9:3231–3269

    CAS  Google Scholar 

  24. Martins CVB, Da Silva DL, Neres ATM, Magalhaes TFF, Watanabe GA, Modolo LV, Sabino AA, De Fátima A, De Resende MA (2009) Curcumin as a promising antifungal of clinical interest. J Antimicrob Chemother 63:337–339

    CAS  PubMed  Google Scholar 

  25. Zorofchian Moghadamtousi S, Abdul Kadir H, Hassandarvish P, Tajik H, Abubakar S, Zandi K (2014) A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Res Int 1–12

  26. Lee W-H, Loo C-Y, Bebawy M, Luk F, Mason RS, Rohanizadeh R (2013) Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr Neuropharmacol 11:338–378

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kunwar A, Barik A, Sandur SK, Indira Priyadarsini K (2011) Differential antioxidant/pro-oxidant activity of dimethoxycurcumin, a synthetic analogue of curcumin. Free Radic Res 45:959–965

    CAS  PubMed  Google Scholar 

  28. Kunwar A, Jayakumar S, Srivastava AK, Priyadarsini KI (2012) Dimethoxycurcumin-induced cell death in human breast carcinoma MCF7 cells: evidence for pro-oxidant activity, mitochondrial dysfunction, and apoptosis. Arch Toxicol 86:603–614

    CAS  PubMed  Google Scholar 

  29. Gupta SC, Patchva S, Aggarwal BB (2013) Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J 15:195–218

    CAS  PubMed  Google Scholar 

  30. Chandran B, Goel A (2012) A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis. Phyther Res 26:1719–1725

    CAS  Google Scholar 

  31. Chen J, He Z-M, Wang F-L, Zhang Z-S, Liu X, Zhai D-D, Chen W-D (2016) Curcumin and its promise as an anticancer drug: an analysis of its anticancer and antifungal effects in cancer and associated complications from invasive fungal infections. Eur J Pharmacol 772:33–42

    CAS  PubMed  Google Scholar 

  32. Nagy LI, Fehér LZ, Szebeni GJ, Gyuris M, Sipos P, Alföldi R, Ózsvári B, Hackler L, Balázs A, Batár P, Kanizsai I et al (2015) Curcumin and its analogue induce apoptosis in leukemia cells and have additive effects with bortezomib in cellular and xenograft models. Biomed Res Int 1–11

  33. Sandur SK, Pandey MK, Sung B, Ahn KS, Murakami A, Sethi G, Limtrakul P, Badmaev V, Aggarwal BB (2007) Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis 28:1765–1773

    CAS  PubMed  Google Scholar 

  34. Hashemzadeh H, Raissi H (2020) Understanding loading, diffusion and releasing of Doxorubicin and Paclitaxel dual delivery in graphene and graphene oxide carriers as highly efficient drug delivery systems. Appl Surf Sci 500:144220

    CAS  Google Scholar 

  35. Karnati KR, Wang Y (2018) Understanding the co-loading and releasing of doxorubicin and paclitaxel using chitosan functionalized single-walled carbon nanotubes by molecular dynamics simulations. Phys Chem Chem Phys 20:9389–9400

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lázaro IA, Lázaro SA, Forgan RS (2018) Enhancing anticancer cytotoxicity through bimodal drug delivery from ultrasmall Zr MOF nanoparticles. Chem Commun 54:2792–2795

    Google Scholar 

  37. Wang J, Ma W, Tu P (2015) Synergistically improved anti-tumor efficacy by co-delivery doxorubicin and curcumin polymeric micelles. Macromol Biosci 15:1252–1261

    CAS  PubMed  Google Scholar 

  38. Nazari SA, Farzad F, Haghi A, Bina A (2021) Surface functionalization of boron nitride nanosheet with folic acid: toward an enhancement in Doxorubicin anticancer drug loading performance. J Mol Graph Model 109:108041

    CAS  PubMed  Google Scholar 

  39. Haghi A, Raissi H, Hashemzadeh H, Farzad F (2020) Designing a high-performance smart drug delivery system for the synergetic co-absorption of DOX and EGCG on ZIF-8. RSC Adv 10:44533–44544

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Muthoosamy K, Abubakar IB, Bai RG, Loh H-S, Manickam S (2016) Exceedingly higher co-loading of curcumin and paclitaxel onto polymer-functionalized reduced graphene oxide for highly potent synergistic anticancer treatment. Sci Rep 6:1–14

    Google Scholar 

  41. Bina A, Raissi H, Hashemzadeh H, Farzad F (2021) Conjugation of a smart polymer to doxorubicin through a pH-responsive bond for targeted drug delivery and improving drug loading on graphene oxide. RSC Adv 11:18809–18817

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Farzad F, Hashemzadeh H (2020) Probing the effect of polyethene glycol on the adsorption mechanisms of Gem on the hexagonal boron nitride as a highly efficient polymer-based drug delivery system: DFT, classical MD and Well-tempered Metadynamics simulations. J Mol Graph Model 98:107613

    CAS  PubMed  Google Scholar 

  43. Lee J, Choi M-K, Song I-S (2023) Recent advances in doxorubicin formulation to enhance pharmacokinetics and tumor targeting. Pharmaceuticals 16:802

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lopez-Chavez E, Garcia-Quiroz A, Santiago-Jiménez JC, Díaz-Góngora JA, Díaz-López R, de Landa Castillo-Alvarado F (2021) Quantum--mechanical characterization of the doxorubicin molecule to improve its anticancer functions. MRS Adv 6:897–902

    CAS  Google Scholar 

  45. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B et al (2019) update: improved access to chemical data. Nucl Acids Res 47(2019):D1102–D1109

    PubMed  Google Scholar 

  46. G.D. D’Ambruoso, M.E. Cremeens, B.R. Hendricks, Web-based animated tutorials using screen capturing software for molecular modeling and spectroscopic acquisition and processing, (2018).

  47. Zoete V, Cuendet MA, Grosdidier A, Michielin O (2011) SwissParam: a fast force field generation tool for small organic molecules. J Comput Chem 32:2359–2368

    CAS  PubMed  Google Scholar 

  48. Huang J, MacKerell AD Jr (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34:2135–2145

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Abraham MJ, Murtola T, Schulz R, Pá ll S, Smith JC, Hess B, et al (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25

    Google Scholar 

  50. Jorgensen WL, Chandrasekhar J, Madura JD, lmpey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    CAS  Google Scholar 

  51. Bonati L, Zhang Y-Y, Parrinello M (2019) Neural networks-based variationally enhanced sampling. Proc Natl Acad Sci 116:17641–17647

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Castaneda SMB, Alvarenga ES, Demuner AJ, Guimaraes LM (2020) Vibrational spectra and theoretical calculations of a natural pentacyclic triterpene alcool isolated from Mucuna pruriens. Struct Chem 31:599–607

    CAS  Google Scholar 

  53. Humphrey W, Dalke A, Schulten K et al (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    CAS  PubMed  Google Scholar 

  54. William H (1996) VMD-visual molecular dynamics. J Mol Graph 14:33–38

    Google Scholar 

  55. Liu B, Goree J, Vaulina OS (2006) Test of the Stokes–Einstein relation in a two-dimensional Yukawa liquid. Phys Rev Lett 96:15005

    Google Scholar 

  56. Hibino H, Kageshima H, Kotsugi M, Maeda F, Guo F-Z, Watanabe Y (2009) Dependence of electronic properties of epitaxial few-layer graphene on the number of layers investigated by photoelectron emission microscopy. Phys Rev B 79:125437

    Google Scholar 

  57. Zaboli A, Raissi H, Farzad F, Hashemzadeh H (2020) Assessment of adsorption behavior of 5-fluorouracil and pyrazinamide on carbon nitride and folic acid-conjugated carbon nitride nanosheets for targeting drug delivery. J Mol Liq 301:112435

    CAS  Google Scholar 

  58. Torrik A, Zaerin S, Zarif M (2022) Doxorubicin and Imatinib co-drug delivery using non-covalently functionalized carbon nanotube: Molecular dynamics study. J Mol Liq 362:119789

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidar Raissi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 882 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bina, A., Raissi, H. & Zaboli, A. Exploring the potential use of natural polymers to enhance the performance of MXene/MOF-5 nanocarrier in loading and co-loading of doxorubicin and curcumin. Polym. Bull. 81, 8383–8404 (2024). https://doi.org/10.1007/s00289-023-05099-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-05099-4

Keywords

Navigation