Skip to main content
Log in

Recent trends on hydrogel development and sustainable applications: a bibliometric analysis and concise review

  • REVIEW PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A bibliometric analysis delves into top-tier research discoveries, providing information that enhances our understanding of diverse research areas. In this context, VOSviewer version 1.6.17 stands out as the preferred choice for visualising Scopus datasets, enabling a more thorough exploration of the subject matter and associated keywords. In our extensive bibliometric investigation spanning from 1992 to 2022, we analysed a total of 12,284 documents associated with the primary keyword ‘hydrogel’, as well as 29 documents related to the secondary keyword ‘hydrogel development’. The bibliometric data revealed a strong presence of hydrogel researchers in China, followed by the USA, South Korea, and Japan. VOSviewer was able to refine the top 2000 documents for the detailed analysis and the most recent articles regarding the parameters such as co-authorship, co-occurrence, citation patterns, and bibliographic coupling. The pursuit for superior and sustainable polymers is essential for modifying the characteristics of hydrogels, boosting their functionality, and maintaining their long-term viability. As a result, selecting sustainable chemicals for hydrogel synthesis becomes a crucial concern in the time being. This review article primarily focuses on comprehending the historical and contemporary processes of hydrogel generation, along with the most recent tools for visualising author networks, keywords, organisational affiliations, and citation patterns. Furthermore, the latter part of this review explores the latest advancements, their accompanying limitations, the significance of these developments, the classification of hydrogels, and their sustainable applications, collectively shedding light on the extensive scope of hydrogels in various domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121

    Article  CAS  PubMed  Google Scholar 

  2. Orbach R, Adler-Abramovich L, Zigerson S et al (2009) Self-assembled Fmoc-peptides as a platform for the formation of nanostructures and hydrogels. Biomacromol 10:2646–2651. https://doi.org/10.1021/bm900584m

    Article  CAS  Google Scholar 

  3. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54(2002):3–12. https://doi.org/10.1016/S0169-409X(01)00239-3

    Article  CAS  PubMed  Google Scholar 

  4. Webber MJ, Pashuck ET (2021) (Macro)molecular self-assembly for hydrogel drug delivery. Adv Drug Deliv Rev 172:275–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ramanan RMK, Chellamuthu P, Tang L, Nguyen KT (2006) Development of a temperature-sensitive composite hydrogel for drug delivery applications. Biotechnol Progress 22(1):118–125

    Article  CAS  Google Scholar 

  6. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery Polymer. Adv drug deliv rev 51(2010):959–967. https://doi.org/10.1016/S0169-409X(01)00203-4

    Article  Google Scholar 

  7. Amiryaghoubi N, Fathi M, Barar J, Omidi Y (2022) Hydrogel-based scaffolds for bone and cartilage tissue engineering and regeneration. React Funct Polym 177:105313

    Article  CAS  Google Scholar 

  8. Fonner JM, Forciniti L, Nguyen H et al (2008) Biocompatibility implications of polypyrrole synthesis techniques. Biomed Mater. https://doi.org/10.1088/1748-6041/3/3/034124

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang X, Chen J, He J et al (2021) Mussel-inspired adhesive and conductive hydrogel with tunable mechanical properties for wearable strain sensors. J Colloid Interface Sci 585:420–432. https://doi.org/10.1016/j.jcis.2020.10.023

    Article  CAS  PubMed  Google Scholar 

  10. Roy DK, Datta B (2017) Multivariate adaptive regression spline ensembles for management of multilayered coastal aquifers. J Hydrol Eng 22:04017031. https://doi.org/10.1061/(asce)he.1943-5584.0001550

    Article  Google Scholar 

  11. Nguyen LH, Kudva AK, Saxena NS, Roy K (2011) Engineering articular cartilage with spatially varying matrix composition and mechanical properties from a single stem cell population using a multi-layered hydrogel. Biomaterials 32:6946–6952. https://doi.org/10.1016/j.biomaterials.2011.06.014

    Article  CAS  PubMed  Google Scholar 

  12. Gao J, Liu R, Wu J et al (2012) The use of chitosan-based hydrogel for enhancing the therapeutic benefits of adipose-derived MSCs for acute kidney injury. Biomaterials 33:3673–3681. https://doi.org/10.1016/j.biomaterials.2012.01.061

    Article  CAS  PubMed  Google Scholar 

  13. Gibas I, Janik H (2010) Review: synthetic polymer hydrogels for biomedical applications. Chem Chem Technol 4:297–304. https://doi.org/10.23939/chcht04.04.297

    Article  Google Scholar 

  14. Kuang J, Yuk KY, Huh KM (2011) Polysaccharide-based superporous hydrogels with fast swelling and superabsorbent properties. Carbohydr Polym 83:284–290. https://doi.org/10.1016/j.carbpol.2010.07.052

    Article  CAS  Google Scholar 

  15. Prasad Bhuniya S, Rahman S, Satyanand AJ et al (2003) Novel route to synthesis of allyl starch and biodegradable hydrogel by copolymerizing allyl-modified starch with methacrylic acid and acrylamide. J Polym Sci Part A Polym Chem 41(11):1650–1658

    Article  Google Scholar 

  16. Berger J, Reist M, Chenite A et al (2005) Pseudo-thermosetting chitosan hydrogels for biomedical application. Int J Pharm 288:17–25. https://doi.org/10.1016/j.ijpharm.2004.07.036

    Article  CAS  PubMed  Google Scholar 

  17. Abdelhamid AE, Kandil H (2022) Facile approach to synthesis super-adsorptive hydrogel based on hyperbranched polymer for water remediation from methylene blue. React Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2022.105312

    Article  Google Scholar 

  18. Bhuyan MM, Adala OB, Okabe H et al (2019) Selective adsorption of trivalent metal ions from multielement solution by using gamma radiation-induced pectin-acrylamide-(2-Acrylamido-2-methyl-1-propanesulfonic acid) hydrogel. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2018.102844

    Article  Google Scholar 

  19. Zeng X, Jiang H (2013) Liquid tunable microlenses based on MEMS techniques. J Phys D Appl Phys 46:323001

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sethi S, Thakur S, Sharma D et al (2022) Malic acid cross-linked chitosan-based hydrogel for highly effective removal of chromium (VI) ions from aqueous environment. React Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2022.105318

    Article  Google Scholar 

  21. Salazar Salas BM, Grijalva Bustamante GA, Fernández Quiroz D et al (2022) Nanocomposite hydrogels of gellan gum and polypyrrole for electro-stimulated ibuprofen release application. React Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2022.105296

    Article  Google Scholar 

  22. Tokuyama H, Aoyagi R, Fujita K et al (2021) Ethanol fermentation using macroporous monolithic hydrogels as yeast cell scaffolds. React Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2021.105075

    Article  Google Scholar 

  23. Wu B, Li Y, Li Y et al (2021) Pickering emulsions-chitosan hydrogel beads carrier system for loading of resveratrol: formulation approach and characterization studies. React Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2021.105074

    Article  Google Scholar 

  24. Zhu T, Li Y, Yang H et al (2021) Preparation of an amphoteric adsorbent from cellulose for wastewater treatment. React Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2021.105086

    Article  Google Scholar 

  25. Sinha V, Chakma S (2020) Synthesis and evaluation of CMC-g-AMPS/Fe/Al/AC composite hydrogel and their use in fluoride removal from aqueous solution. Environ Technol Innov. https://doi.org/10.1016/j.eti.2020.100620

    Article  Google Scholar 

  26. Rahmatpour A, Soleimani P, Mirkani A (2022) Eco-friendly poly (vinyl alcohol)/partially hydrolyzed polyacrylamide/graphene oxide semi-IPN nanocomposite hydrogel as a reusable and efficient adsorbent of cationic dye methylene blue from water. React Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2022.105290

    Article  Google Scholar 

  27. Pardo A, Garcia H, Ramirez P et al (2018) Self-regenerating photocatalytic hydrogel for the adsorption and decomposition of methylene blue and antibiotics in water. Environ Technol Innov 11:321–327. https://doi.org/10.1016/j.eti.2018.06.005

    Article  Google Scholar 

  28. Niazy B, Ghasemzadeh H, Keshtkar Vanashi A, Afraz S (2022) Polyvinyl alcohol/polyacrylamide hydrogel-based sensor for lead (II) ion sensing by resonance rayleigh scattering. React Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2022.105266

    Article  Google Scholar 

  29. Kongseng P, Amornpitoksuk P, Chantarak S (2022) Development of multifunctional hydrogel composite based on poly (vinyl alcohol-g-acrylamide) for removal and photocatalytic degradation of organic dyes. React Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2022.105207

    Article  Google Scholar 

  30. Choe SR, Haldorai Y, Jang SC et al (2018) Fabrication of alginate/humic acid/Fe-aminoclay hydrogel composed of a grafted-network for the efficient removal of strontium ions from aqueous solution. Environ Technol Innov 9:285–293. https://doi.org/10.1016/j.eti.2017.12.008

    Article  Google Scholar 

  31. Behrouzi M, Moghadam PN (2018) Synthesis of a new superabsorbent copolymer based on acrylic acid grafted onto carboxymethyl tragacanth. Carbohydr Polym 202:227–235. https://doi.org/10.1016/j.carbpol.2018.08.094

    Article  CAS  PubMed  Google Scholar 

  32. Santos RVA, Costa GMN, Pontes KV (2019) Development of tailor-made superabsorbent polymers: review of key aspects from raw material to kinetic model. J Polym Environ 27:1861–1877

    Article  CAS  Google Scholar 

  33. Kabiri K, Omidian H, Hashemi SA, Zohuriaan-Mehr MJ (2003) Synthesis of fast-swelling superabsorbent hydrogels: effect of crosslinker type and concentration on porosity and absorption rate. Eur Polym J 39:1341–1348. https://doi.org/10.1016/S0014-3057(02)00391-9

    Article  CAS  Google Scholar 

  34. Fang S, Wang G, Li P et al (2018) Synthesis of chitosan derivative graft acrylic acid superabsorbent polymers and its application as water retaining agent. Int J Biol Macromol 115:754–761. https://doi.org/10.1016/j.ijbiomac.2018.04.072

    Article  CAS  PubMed  Google Scholar 

  35. Irani M, Ismail H, Ahmad Z (2013) Preparation and properties of linear low-density polyethylene-g-poly (acrylic acid)/organo-montmorillonite superabsorbent hydrogel composites. Polym Test 32:502–512. https://doi.org/10.1016/j.polymertesting.2013.01.001

    Article  CAS  Google Scholar 

  36. Xu JH, Tao J, Gan Y et al (2014) Synthesis and swelling behaviours of APT-g-PAMPS superabsorbent composites by microwave irradiation. Mater Resear Innov 18:S2377–S2381

    Article  Google Scholar 

  37. Montesano FF, Parente A, Santamaria P et al (2015) Biodegradable superabsorbent hydrogel increaseswater retention properties of growing media and plant growth. Agricul Agricul Sci Procedia 4:451–458. https://doi.org/10.1016/j.aaspro.2015.03.052

    Article  Google Scholar 

  38. Ma S, Yu B, Pei X, Zhou F (2016) Structural hydrogels. Polymer (Guildf) 98:516–535

    Article  CAS  Google Scholar 

  39. Du Y, Teixeira AAC (2012) A bibliometric account of Chinese economics research through the lens of the China economic review. China Econ Rev 23:743–762

    Article  Google Scholar 

  40. Demiroz F, Haase TW (2019) The concept of resilience: a bibliometric analysis of the emergency and disaster management literature. Local Gov Stud 45:308–327. https://doi.org/10.1080/03003930.2018.1541796

    Article  Google Scholar 

  41. Fu H, Wang M, Li P et al (2019) Tracing knowledge development trajectories of the internet of things domain: a main path analysis. IEEE Trans Industr Inform 15:6531–6540. https://doi.org/10.1109/TII.2019.2929414

    Article  Google Scholar 

  42. Donthu N, Kumar S, Pattnaik D (2020) Forty-five years of journal of business research: a bibliometric analysis. J Bus Res 109:1–14. https://doi.org/10.1016/j.jbusres.2019.10.039

    Article  Google Scholar 

  43. Huang Q, Xin X (2020) A bibliometric analysis of translation criticism studies and its implications. Perspect Stud Transl Theory Pract 28:737–755. https://doi.org/10.1080/0907676X.2020.1740750

    Article  Google Scholar 

  44. Ding XH, Feng SJ, Zheng QT (2021) A two-dimensional analytical model for contaminant transport in a finite domain subjected to multiple arbitrary time-dependent point injection sources. J Hydrol (Amst). https://doi.org/10.1016/j.jhydrol.2021.126318

    Article  Google Scholar 

  45. Cai Z, Chang Q, Yip PSF (2020) A scientometric analysis of suicide research: 1990–2018. J Affect Disord 266:356–365. https://doi.org/10.1016/j.jad.2020.01.121

    Article  PubMed  Google Scholar 

  46. Nazaripour M, Reshadi MAM, Mirbagheri SA et al (2021) Research trends of heavy metal removal from aqueous environments. J Environ Manage. https://doi.org/10.1016/j.jenvman.2021.112322

    Article  PubMed  Google Scholar 

  47. van Eck NJ, Waltman L (2014) Visualizing bibliometric networks. In: Measuring scholarly impact. Springer, Berlin, pp 285–320

  48. Gavel Y, Iselid L (2008) Web of science and scopus: a journal title overlap study. Online Inf Rev 32:8–21. https://doi.org/10.1108/14684520810865958

    Article  Google Scholar 

  49. Waltman L, van Eck NJ (2013) A smart local moving algorithm for large-scale modularity-based community detection. Eur Phys J B. https://doi.org/10.1140/epjb/e2013-40829-0

    Article  Google Scholar 

  50. van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84:523–538. https://doi.org/10.1007/s11192-009-0146-3

    Article  PubMed  Google Scholar 

  51. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Progress Polym Sci (Oxford) 37:106–126

    Article  CAS  Google Scholar 

  52. Sun JY, Zhao X, Illeperuma WRK et al (2012) Highly stretchable and tough hydrogels. Nature 489:133–136. https://doi.org/10.1038/nature11409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer (Guildf) 49:1993–2007

    Article  CAS  Google Scholar 

  54. Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103:655–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nichol JW, Koshy ST, Bae H et al (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544. https://doi.org/10.1016/j.biomaterials.2010.03.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. In Biomed Eng. https://doi.org/10.1615/CritRevBiomedEng.v40.i5.10

    Article  Google Scholar 

  57. Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19:485–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Khademhosseini A, Langer R, Borenstein J, Vacanti JP (2006) Microscale technologies for tissue engineering and biology. Proc Natl Acad Sciences 103(8):2480–2487

    Article  CAS  Google Scholar 

  59. Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267

    Article  Google Scholar 

  60. Hennink WE, van Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv drug deliv rev 64:223–236

    Article  Google Scholar 

  61. Wang R, Chen X, Yang Y et al (2022) Imidazolidinyl urea reinforced polyacrylamide hydrogels through the formation of multiple hydrogen bonds. React Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2022.105183

    Article  Google Scholar 

  62. Wei H, Liu S, Tong Z et al (2022) Hydrogel-based microneedles of chitosan derivatives for drug delivery. React Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2022.105200

    Article  Google Scholar 

  63. Liu R, Chen J, Luo Z et al (2022) Stretchable, self-adhesive, conductive, anti-freezing sodium polyacrylate-based composite hydrogels for wearable flexible strain sensors. React Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2022.105197

    Article  Google Scholar 

  64. Hennink WE, van Nostrum CF (2012) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 64:223–236

    Article  Google Scholar 

  65. Gong CY, Shi S, Dong PW et al (2009) Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. Int J Pharm 365:89–99. https://doi.org/10.1016/j.ijpharm.2008.08.027

    Article  CAS  PubMed  Google Scholar 

  66. Yue Z, Moulton SE, Cook M et al (2013) Controlled delivery for neuro-bionic devices. Adv Drug Deliv Rev 65:559–569

    Article  CAS  PubMed  Google Scholar 

  67. Kashyap D, Chaubey J (2014) Identification of groundwater pollution source through inverse modeling. Int J Sci Eng Technol 3:138–142

    Google Scholar 

  68. Jamnongkan T, Kaewpirom S (2010) Potassium release kinetics and water retention of controlled-release fertilizers based on chitosan hydrogels. J Polym Environ 18:413–421. https://doi.org/10.1007/s10924-010-0228-6

    Article  CAS  Google Scholar 

  69. Agaba H, Orikiriza LJB, Obua J et al (2011) Hydrogel amendment to sandy soil reduces irrigation frequency and improves the biomass of Agrostis stolonifera. Agric Sci 02:544–550. https://doi.org/10.4236/as.2011.24071

    Article  CAS  Google Scholar 

  70. Gorrasi G, Bugatti V, Vittoria V (2012) Pectins filled with LDH-antimicrobial molecules: preparation, characterization, and physical properties. Carbohydr Polym 89:132–137. https://doi.org/10.1016/j.carbpol.2012.02.061

    Article  CAS  PubMed  Google Scholar 

  71. Huang H, Yang Q, Huang C, Zhang L (2022) Facile and low-cost fabrication of composite hydrogels to improve adsorption of copper ions. Environ Technol Innov. https://doi.org/10.1016/j.eti.2022.102427

    Article  Google Scholar 

  72. Kaur K, Paiva SS, Caffrey D et al (2021) Injectable chitosan/collagen hydrogels nano-engineered with functionalized single wall carbon nanotubes for minimally invasive applications in bone. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2021.112340

    Article  Google Scholar 

  73. Sun W, Schaffer S, Dai K et al (2021) 3D printing hydrogel-based soft and biohybrid actuators: a mini-review on fabrication techniques, applications, and challenges. Front Robot AI 8:673533

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ding X, Wang S, Dai R et al (2022) Hydrogel beads derived from chrome leather scraps for the preparation of lightweight gypsum. Environ Technol Innov. https://doi.org/10.1016/j.eti.2021.102224

    Article  PubMed  Google Scholar 

  75. Cheng Y, Chan KH, Wang XQ et al (2019) Direct-ink-write 3D printing of hydrogels into biomimetic soft robots. ACS Nano 13:13176–13184. https://doi.org/10.1021/acsnano.9b06144

    Article  CAS  PubMed  Google Scholar 

  76. Tassanapukdee Y, Prayongpan P, Songsrirote K (2021) Removal of heavy metal ions from an aqueous solution by CS/PVA/PVP composite hydrogel synthesized using microwaved-assisted irradiation. Environ Technol Innov. https://doi.org/10.1016/j.eti.2021.101898

    Article  Google Scholar 

  77. Tan X, Gao W, Duan Z et al (2023) Synthesis of novel algal extracellular polymeric substances (EPS)-based hydrogels for the efficient removal and recovery of phosphorus from contaminated waters: development, characterisation, and performance. J Environ Chem Eng 11:109044. https://doi.org/10.1016/j.jece.2022.109044

    Article  CAS  Google Scholar 

  78. Chatterjee S, Ohemeng-Boahen G, Sewu DD et al (2022) Improved adsorption of Congo red from aqueous solution using alkali-treated goethite impregnated chitosan hydrogel capsule. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2022.108244

    Article  Google Scholar 

  79. Duc TH, Vu TK, Dang CT et al (2021) Synthesis and application of hydrogel calcium alginate microparticles as a biomaterial to remove heavy metals from aqueous media. Environ Technol Innov. https://doi.org/10.1016/j.eti.2021.101400

    Article  Google Scholar 

  80. Xie C, Wang X, He H et al (2020) Mussel-inspired hydrogels for self-adhesive bioelectronics. Adv Funct Mater 30:1909954

    Article  CAS  Google Scholar 

  81. Li Y, Wang J, Wang Y, Cui W (2021) Advanced electrospun hydrogel fibers for wound healing. Compos B Eng 223:109101

    Article  CAS  Google Scholar 

  82. Gosecka M, Gosecki M (2021) Antimicrobial polymer-based hydrogels for the intravaginal therapies—engineering considerations. Pharmaceutics 13:1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nguyen HT, Phuong VN, Van TN et al (2020) Low-cost hydrogel derived from agro waste for veterinary antibiotic removal: optimization, kinetics, and toxicity evaluation. Environ Technol Innov. https://doi.org/10.1016/j.eti.2020.101098

    Article  Google Scholar 

  84. Jacoby R, Peukert M, Succurro A et al (2017) The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01617

    Article  PubMed  PubMed Central  Google Scholar 

  85. Das L, Das P, Bhowal A, Bhattachariee C (2020) Synthesis of hybrid hydrogel nano-polymer composite using graphene oxide, chitosan and PVA and its application in wastewater treatment. Environ Technol Innov. https://doi.org/10.1016/j.eti.2020.100664

    Article  Google Scholar 

  86. Li P, Zhou M, Liu H et al (2022) Preparation of green magnetic hydrogel from soybean residue cellulose for effective and rapid removal of copper ions from wastewater. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2022.108213

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sun Z, Yin Y, An Y et al (2022) A novel modified carboxymethyl cellulose hydrogel adsorbent for efficient removal of poisonous metals from wastewater: performance and mechanism. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2022.108179

    Article  PubMed  PubMed Central  Google Scholar 

  88. Prakash S, Vasudevan S, Banerjee A et al (2021) Sustainable irrigation through application of hydrogel: a review. Alinteri J Agric Sci 36:38–52. https://doi.org/10.47059/alinteri/v36i2/ajas21113

    Article  Google Scholar 

  89. Sinha V, Chakma S (2019) Advances in the preparation of hydrogel for wastewater treatment: a concise review. J Environ Chem Eng 7:103295

    Article  CAS  Google Scholar 

  90. Omondi BA, Nguele R, Okabe H et al (2016) Multicomponent adsorption of benzene and selected borderline heavy metals by poly (butadiene-co-acrylic acid) hydrogel. J Environ Chem Eng 4:3385–3392. https://doi.org/10.1016/j.jece.2016.07.013

    Article  CAS  Google Scholar 

  91. Karbarz M, Khalil AM, Wolowicz K et al (2018) Efficient removal of cadmium and lead ions from water by hydrogels modified with cystine. J Environ Chem Eng 6:3962–3970. https://doi.org/10.1016/j.jece.2018.05.054

    Article  CAS  Google Scholar 

  92. Shalla AH, Bhat MA, Yaseen Z (2018) Hydrogels for removal of recalcitrant organic dyes: a conceptual overview. J Environ Chem Eng 6:5938–5949

    Article  CAS  Google Scholar 

  93. Mu R, Liu B, Chen X et al (2020) Hydrogel adsorbent in industrial wastewater treatment and ecological environment protection. Environ Technol Innov. https://doi.org/10.1016/j.eti.2020.101107

    Article  Google Scholar 

  94. Omidian H, Rocca JG, Park K (2005) Advances in super porous hydrogels. J Control Release 102:3–12

    Article  CAS  PubMed  Google Scholar 

  95. Chang YR, Lee YJ, Lee DJ (2022) Synthesis of pH, thermally, and shape stable poly (vinyl alcohol) and alginate cross-linked hydrogels for cesium adsorption from water. Environ Technol Innov. https://doi.org/10.1016/j.eti.2022.102431

    Article  Google Scholar 

  96. Ibrahim S, Nawwar GAM, Sultan M (2016) Development of bio-based polymeric hydrogel: green, sustainable, and low-cost plant fertilizer packaging material. J Environ Chem Eng 4:203–210. https://doi.org/10.1016/j.jece.2015.10.028

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support provided by Indian Institute of Technology Delhi (IIT Delhi) for carrying out the research. Authors are also grateful to Caleb T. White for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamalakanta Sahu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, K., Chakma, S. Recent trends on hydrogel development and sustainable applications: a bibliometric analysis and concise review. Polym. Bull. 81, 7687–7711 (2024). https://doi.org/10.1007/s00289-023-05080-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-05080-1

Keywords

Navigation