Skip to main content
Log in

Effect of nanometer zinc oxide and processing technology on the properties of antibacterial composites

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

With the increasing concern for health and safety, it is crucial to investigate how antibacterial agents demonstrate high antibacterial activity in two-phase blend systems. In this study, we prepared antibacterial films comprising a low concentration (0.2%) zinc oxide/ethylene-octene copolymer (ZnO/POE) and ZnO/linear low-density polyethylene (LLDPE) with high antibacterial activity (99.9%) and an antibacterial property value (R) of 6.9. The addition of nanometer (nano) ZnO induces the crystallization of pure materials, increasing their crystallinity and long period and significantly reducing spherulite size. Using a two-phase blending process, we achieved an antibacterial activity of (ZnO/POE)/(ZnO/LLDPE) (0.2%) of 99.9% with an R-value of 6.9, superior to the single-phase blending of POE/(ZnO/LLDPE) (0.2%) (99.0%, R = 2.0). Significantly, this difference can be attributed to the fact that nano-ZnO promotes the compatibility of POE and LLDPE in the two-phase blending process. Additionally, the two-phase blending process enhances tear strength and light transmittance compared to single-phase blending. These findings are of great significance for developing nano-ZnO-based two-phase blend antibacterial materials with low concentration and high antibacterial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang CY, Makvandi P, Zare EN, Tay FR, Niu LN (2020) Advances in antimicrobial organic and inorganic nanocompounds in biomedicine. Adv Therap 3(8):2000024. https://doi.org/10.1002/adtp.202000024

    Article  Google Scholar 

  2. Lam SJ, Wong EH, Boyer C, Qiao GG (2018) Antimicrobial polymeric nanoparticles. Prog Polym Sci 76:40–64. https://doi.org/10.1016/j.progpolymsci.2017.07.007

    Article  CAS  Google Scholar 

  3. Zhong Y, Godwin P, Jin Y, Xiao H (2019) Biodegradable polymers and green-based antimicrobial packaging materials: a mini-review. Adv Inds Eng Poly Res 3(1):27–35. https://doi.org/10.1016/j.aiepr.2019.11.002

    Article  Google Scholar 

  4. Ahmad SS, Yousuf O, Islam RU, Younis K (2021) Silver nanoparticles as an active packaging ingredient and its toxicity. Packag Technol Sci 34(11–12):653–663. https://doi.org/10.1002/pts.2603

    Article  CAS  Google Scholar 

  5. Dobrucka R, Ankiel M (2019) Possible applications of metal nanoparticles in antimicrobial food packaging. J Food Safety 39(2):e12617. https://doi.org/10.1111/jfs.12617

    Article  CAS  Google Scholar 

  6. Bumbudsanpharoke N, Choi J, Park HJ, Ko S (2019) Zinc migration and its effect on the functionality of a low density polyethylene-ZnO nanocomposite film. Food Packag Shelf 20:100301. https://doi.org/10.1016/j.fpsl.2019.100301

    Article  Google Scholar 

  7. Valerini D, Tammaro L, Villani F, Rizzo A, Caputo I, Paolella G, Vigliotta G (2020) Antibacterial Al-doped ZnO coatings on PLA films. J Mater Sci 55(11):4830–4847. https://doi.org/10.1007/s10853-019-04311-z

    Article  CAS  Google Scholar 

  8. Gedik G, Aksit A, Engin B, Paksu U (2018) Production of metal oxide containing antibacterial coated textile material and investigation of the mechanism of action. Fiber Polym 19:2548–2563. https://doi.org/10.1007/s12221-018-8306-9

    Article  CAS  Google Scholar 

  9. Ma G, Liang X, Li L, Qiao R, Jiang D, Ding Y, Chen H (2014) Cu-doped zinc oxide and its polythiophene composites: preparation and antibacterial properties. Chemosphere 100:146–151. https://doi.org/10.1016/j.chemosphere.2013.11.053

    Article  CAS  PubMed  Google Scholar 

  10. Naskar A, Lee S, Kim KS (2020) Antibacterial potential of Ni-doped zinc oxide nanostructure: comparatively more effective against gram-negative bacteria including multi-drug resistant strains. RSC Adv 10(3):1232–1242. https://doi.org/10.1039/C9RA09512H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li M, Zhu L, Lin D (2011) Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol 45(5):1977–1983. https://doi.org/10.1021/es102624t

    Article  CAS  PubMed  Google Scholar 

  12. Li SC, Li B, Qin ZJ (2010) The Effect of the Nano-ZnO concentration on the mechanical, antibacterial and melt rheological properties of LLDPE/modified nano-ZnO composite films. Polym Plast Technol 49(13):1334–1338. https://doi.org/10.1080/03602559.2010.496431

    Article  CAS  Google Scholar 

  13. Li SC, Li YN (2010) Mechanical and antibacterial properties of modified nano-ZnO/high-density polyethylene composite films with a low doped content of nano-ZnO. J Appl Polym Sci 116:2965–2969. https://doi.org/10.1002/app.31802

    Article  CAS  Google Scholar 

  14. Liu H, Li SC, Liu Y, Iqbal M (2011) Thermostimulative shape memory effect of linear low-density polyethylene/polypropylene (LLDPE/PP) blends compatibilized by crosslinked LLDPE/PP blend (LLDPE–PP). J Appl Polym Sci 122(4):2512–2519. https://doi.org/10.1002/app.34345

    Article  CAS  Google Scholar 

  15. Bekhit M, El-Sabbagh SH, Mohamed RM, El-Sayyad GS, Sokary R (2022) Mechanical, thermal and antimicrobial properties of LLDPE/EVA/MMT/Ag nanocomposites films synthesized by gamma irradiation. J Inorg Organomet 32:631–645. https://doi.org/10.1007/s10904-021-02137-4

    Article  CAS  Google Scholar 

  16. Bui HT, Prawel DA, Harris KL, Li E, James SP (2019) Development and fabrication of vapor cross-linked hyaluronan-polyethylene interpenetrating polymer network as a biomaterial. ACS Appl Mater Interfaces 11(21):18930–18941. https://doi.org/10.1021/acsami.9b03437

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y, Liu LZ, Tian C, Wang Y, Song L, Shi Y (2023) Crystallization, morphology, optical properties, tear properties and antibacterial properties of nano zinc oxide composites. J Polym Res 30(9):352. https://doi.org/10.1007/s10965-023-03720-8

    Article  CAS  Google Scholar 

  18. Lin B, Zheng C, Zhu QY, Xie F (2019) A polyolefin encapsulant material designed for photovoltaic modules: from perspectives of peel strength and transmittance. J Therm Anal Calorim 140:2259–2265. https://doi.org/10.1007/s10973-019-09006-w

    Article  CAS  Google Scholar 

  19. Xie TT, Wu H, Bao WT, Guo SY, Chen Y, Huang H, Chen HY, Lai SY, Jow J (2010) Enhanced compatibility of PA6/POE blends by POE-g-MAH prepared through ultrasound-assisted extrusion. J Appl Polym Sci 118:1846–1852. https://doi.org/10.1002/app.32547

    Article  CAS  Google Scholar 

  20. Peng H, Lu M, Lv F, Niu M, Wang W (2019) Understanding the effect of silane crosslinking reaction on the properties of PP/POE blends. Polym Bull 76:6413–6428. https://doi.org/10.1007/s00289-019-02724-z

    Article  CAS  Google Scholar 

  21. Wang Z, Wang L, Wang X, Hao C (2012) Deformation reversibility enhancement of thermoplastic vulcanizates based on high density polyethylene and ethylene-propylene-diene terpolymer. Mater Chem Phys 134(2–3):1185–1189. https://doi.org/10.1016/j.matchemphys.2012.04.019

    Article  CAS  Google Scholar 

  22. Liu S, Wang K, Zhang Z, Ren Y, Chen L, Sun X, Liang W (2020) Effects of ethylene-octene copolymer (POE) on the brittle to ductile transition of high-density polyethylene/POE blends. Polym Eng Sci 60(10):2640–2652. https://doi.org/10.1002/pen.25532

    Article  CAS  Google Scholar 

  23. Li Y, Zhang Y, Zhang YX (2003) Structure and mechanical properties of SRP/HDPE/POE (EPR or EPDM) composites. Polym Test 22(8):859–865. https://doi.org/10.1016/S0142-9418(03)00022-9

    Article  CAS  Google Scholar 

  24. Ke QQ, Huang XY, Wei P, Wang GL, Jiang PK (2007) Thermal, mechanical, and dielectric behaviors of crosslinked linear low density polyethylene/polyolefin elastomers blends. J Appl Polym Sci 104(3):1920–1927. https://doi.org/10.1002/app.25874

    Article  CAS  Google Scholar 

  25. Kumar P, Narayan Maiti U, Sikdar A, Kumar Das T, Kumar A, Sudarsan V (2019) Recent advances in polymer and polymer composites for electromagnetic interference shielding: review and future prospects. Polym Rev 59(4):687–738. https://doi.org/10.1080/15583724.2019.1625058

    Article  CAS  Google Scholar 

  26. Samarth N, Mahanwar P (2018) Study and characterization of LLDPE/polyolefin elastomer and LLDPE/EPDM blend: effect of chlorinated water on blend performance. Mater Today 5(10):22433–22446. https://doi.org/10.1016/j.matpr.2018.06.613

    Article  CAS  Google Scholar 

  27. Paxton NC, Allenby MC, Lewis PM, Woodruff MA (2019) Biomedical applications of polyethylene. Eur Polym J 118:412–428. https://doi.org/10.1016/j.eurpolymj.2019.05.037

    Article  CAS  Google Scholar 

  28. Galli R, Hall MC, Breitenbach ER, Colpani GL, Zanetti M, de Mello JMM, Fiori MA (2020) Antibacterial polyethylene-ethylene vinyl acetate polymeric blend by incorporation of zinc oxide nanoparticles. Polym Test 89:106554. https://doi.org/10.1016/j.polymertesting.2020.106554

    Article  CAS  Google Scholar 

  29. Jeong S, Kim D, Seo J (2015) Preparation and antimicrobial properties of LDPE composite films melt-blended with polymerized urushiol powders (YPUOH) for packaging applications. Prog Org Coat 85:76–83. https://doi.org/10.1016/j.porgcoat.2015.03.012

    Article  CAS  Google Scholar 

  30. Soleimani A, Farahmandghavi F, Morshedian J, Keyvan Rad J (2023) Silver/hydrogen-exchanged zeolites embedded in modified polyethylene blends for antibacterial packaging with prolonged color stability. ACS Appl Polym Mater 5(4):2917–2930. https://doi.org/10.1021/acsapm.3c00126

    Article  CAS  Google Scholar 

  31. Promhuad K, Phothisarattana D, Laorenza Y, Bumbudsanpharoke N, Harnkarnsujarit N (2023) Zinc oxide enhanced the antibacterial efficacy of biodegradable PBAT/PBS nanocomposite films: morphology and food packaging properties. Food Biosci 55:103077. https://doi.org/10.1016/j.fbio.2023.103077

    Article  CAS  Google Scholar 

  32. Shankar S, Rhim JW (2019) Effect of types of zinc oxide nanoparticles on structural, mechanical and antibacterial properties of poly (lactide)/poly (butylene adipate-co-terephthalate) composite films. Food Packag Shelf 21:100327. https://doi.org/10.1016/j.fpsl.2019.100327

    Article  Google Scholar 

  33. Wang T, Shi Y, Li Y, Liu L (2021) The effects of ZnO nanoparticle reinforcement on thermostability, mechanical, and optical properties of the biodegradable PBAT film. J Polym Eng 41(10):835–841. https://doi.org/10.1515/polyeng-2021-0150

    Article  CAS  Google Scholar 

  34. Wang S, Wu C, Ren MQ, Van Horn RM, Graham MJ, Han CC, Cheng SZ (2009) Liquid-liquid phase separation in a polyethylene blend monitored by crystallization kinetics and crystal-decorated phase morphologies. Polymer 50(4):1025–1033. https://doi.org/10.1016/j.polymer.2008.12.028

    Article  CAS  Google Scholar 

  35. Zamiri R, Zakaria A, Ahangar HA, Darroudi M, Zak AK, Drummen GP (2012) Aqueous starch as a stabilizer in zinc oxide nanoparticle synthesis via laser ablation. J Alloy Compd 516:41–48. https://doi.org/10.1016/j.jallcom.2011.11.118

    Article  CAS  Google Scholar 

  36. Wu T, Li Y, Wu G (2005) Crystalline structure and phase structure of mLLDPE/LDPE blends. Polymer 46(10):3472–3480. https://doi.org/10.1016/j.polymer.2005.02.084

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Synchrotron SAXS experiments were performed on Beamline 1W2A at the Beijing Synchrotron Radiation Facility. The authors are gratitude to the assistance of the beamline scientists at BSRF and SSRF, especially Zhihong Li and Guang Mo.

Funding

This work is supported by a Liaoning climbing scholar program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Shi.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, T., Liu, LZ. et al. Effect of nanometer zinc oxide and processing technology on the properties of antibacterial composites. Polym. Bull. 81, 7193–7210 (2024). https://doi.org/10.1007/s00289-023-05049-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-05049-0

Keywords

Navigation