Skip to main content
Log in

Synthesis of novel copolymer (nano)composite based on N-vinylcarbazole and black eriochrome using electro-polymerization method

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This study reports the successful synthesis of a new copolymer based on N-vinylcarbazole (NVC) and Eriochrome black T (EBT) monomers as well as (nano)composites based on carbon nanotubes (CNTs) as nano-filler. For this, the copolymer poly (N-vinylcarbazole-co-black eriochrome T), noted poly (NVC-co- EBT) was synthetized by electro-copolymerization of the selected monomers deposited on Indium Tin Oxide (ITO) electrode in lithium perchlorate electrolyte, using cyclic voltammetry method. The (nano)composites poly (NVC-co- EBT)/CNTs were synthesized in the same conditions as the copolymer, in presence of different CNTs content (3 wt. %, 5wt. %, 10 wt. %). The electrodeposition of the copolymer (nano)composites was successfully occurred after the first cycle and thin films were formed. Remarkably, their thickness was increased by increasing the cycle’s numbers. The electro-chemical properties of the new copolymer, as well as (nano)composites, were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The synthesized (nano)composites display a diffusion process related to Warburg impedance, for a low and intermediate frequencies but they exhibit a capacitive behavior at high frequencies which implies the increase of the conductivity character. Furthermore, the obtained copolymer poly (NVC-co- EBT) exhibits low transmittance in the UV–visible region, with a gap energy value of 1.95 eV. Interestingly, by doping with CNTs nano-filler at 3 wt. % and 5 wt. %, the energy gap was relatively increased to achieve a value of 2.41 eV and 2.71 eV, respectively. Therefore, at 10 wt. % of CNTs, the energy gap of the copolymer (nano)composite becomes equal to zero. Consequently, these results highlight the importance of the synthesized copolymer to have a semi-conductor and conductor behavior according to the CNTs content in the material, which promote its application in many devices, as photocatalysis and photovoltaic fields.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abu MH, Elella E, Goda S, Gab-Allah MA, Hong SE, Pandit B, Lee S, Gamal H, Rehman AU, Yoon KR (2021) Xanthan gum-derived materials for applications in environment and eco-friendly materials. J Environ Chem Eng 9(1):104702

    Article  Google Scholar 

  2. Marwa M, Abdel-Aziz HM, Abu Elella R, Mohamed R (2020) Green synthesis of quaternized chitosan/silver nanocomposites for targeting mycobacterium tuberculosis and lung carcinoma cells (A-549). Int J Biol Macromol 142:244–253

    Article  Google Scholar 

  3. Yan Y, Jiang Y, Ng ELL, Zhang Y (2023) Progress and opportunities in additive manufacturing of electrically conductive polymer composites: materials today. Advances 17:100333

    CAS  Google Scholar 

  4. Abdel-Aziz MH, Maddah HA, Zoromba MSh, Al-Hossainy AF (2023) One-dimensional ternary conducting polymers blend with 9.26% power conversion efficiency for photovoltaic devices applications. Alex Eng J 66:475–488

    Article  Google Scholar 

  5. Hamlaoui FZ, Naar N, Saib F, Trari M (2023) Preparation and characterization of a novel modified system: polyaniline/1,5-naphthalene disulfonic acid as a novel photocatalyst for H2 production. J Mater Sci Mater Electron 34:253

    Article  CAS  Google Scholar 

  6. Badawi MN, Bhatia M, Ramesh S, Ramesh K, Khan M, Adil SF (2023) Enhancement of the performance properties of pure cotton fabric by incorporating conducting polymer (PEDOT: PSS) for flexible and foldable electrochemical applications. J Electron Mater 52:2201–2215

    Article  Google Scholar 

  7. Sardana S, Gupta A, Singh K, Maan AS, Ohlan A (2022) Conducting polymer hydrogel based electrode materials for supercapacitor applications. J Energy Storage 45:103510

    Article  Google Scholar 

  8. Kumar RD, Nagarani S, Sethuraman V, Andra S, Dhinakaran V (2022) Investigations of conducting polymers, carbon materials, oxide and sulfide materials for supercapacitor applications: a review. Chem Pap 76:3371–3385

    Article  Google Scholar 

  9. Pandit B, Goda ES, AbuElella MH, urRehman A, Hong SE, Rondiya RS, Barkataki P, Shaikh FS, Al-Enizi AM, El-Bahy MS, Yoon KR (2022) One-pot hydrothermal preparation of hierarchical manganese oxide nanorods for high-performance symmetric supercapacitors. J Energy Chem 65:116–126

    Article  CAS  Google Scholar 

  10. Goda ES, Abu MH, Elella SE, Hong BP, Yoon KR, Gamal H (2021) Smart flame-retardant coating containing carboxymethyl chitosan nanoparticles decorated graphene for obtaining multifunctional textiles. Cellulose. https://doi.org/10.1007/s10570-021-03833-7

    Article  Google Scholar 

  11. Abu MH, Elella ES, Goda KR, Yoon SE, Hong MS, Morsy RA, Sadak HG (2021) Novel vapor polymerization for integrating flame retardant textile with multifunctional properties. Compos Commun 24:100614

    Article  Google Scholar 

  12. Elella MH, Shalan AE, Sabaa MW, Mohamed RR (2022) One-pot green synthesis of antimicrobial chitosan derivative nanocomposites to control foodborne pathogens. RSC Adv 12:1095–1104

    Article  PubMed  PubMed Central  Google Scholar 

  13. Elgamal AM, Abu MH, Elella GR, Saad NA, El-Ghany ABD (2022) Synthesis, characterization and swelling behavior of high-performance antimicrobial biocompatible copolymer based on carboxymethyl xanthan. Mater Today Commun 33:104209

    Article  CAS  Google Scholar 

  14. Mahmoud H, Elella A, Demiana HH, Mohamed RR, Sabaa MW (2021) Synthesis of xanthan gum/trimethyl chitosan interpolyelectrolyte complex as pH-sensitive protein carrier. Polym Bull. https://doi.org/10.1007/s00289-021-03656-3

    Article  Google Scholar 

  15. Goda ES, Abu MH, Elella MS, Singu BS, El Bidhan Pandit AM, Shafey AM, Aboraia HG, Hong SE, Yoon KR (2021) N-methylene phosphonic acid chitosan/graphene sheets decorated with silver nanoparticles as green antimicrobial agents. Int J Biol Macromol 182:680–688

    Article  CAS  PubMed  Google Scholar 

  16. Abu MH, Elella ES, Goda HM, Abdallah AE, Shalan HG, Yoon KR (2021) Innovative bactericidal adsorbents containing modified xanthan gum/ montmorillonite nanocomposites for wastewater treatment. Int J Biol Macromol 167:1113–1125

    Article  Google Scholar 

  17. Abu MH, Elella MW, Sabaa DH, Hanna MM, Abdel-Aziz RR, Mohamed (2020) Antimicrobial pH-sensitive protein carrier based on modified xanthan gum. J Drug Deliv Sci Technol 57:101673

    Article  Google Scholar 

  18. Elella MA, Abdel-Aziz MM, El-Ghany NAA (2021) Synthesis of a high-performance antimicrobial o-quaternized alginate – a promising potential antimicrobial agent. Cellul Chem Technol Synth 55:75–86. https://doi.org/10.35812/cellulosechemtechnol.2021.55.08

    Article  Google Scholar 

  19. Abu MH, Elella HM, Abdallah HG, Moustafa EB, Goda ES (2022) Rational design of biocompatible IPNs hydrogels containing carboxymethyl starch and trimethyl chitosan chloride with high antibacterial activity. Cellulose 29:7317–7330. https://doi.org/10.1007/s10570-022-04703-6

    Article  CAS  Google Scholar 

  20. Ngwuluka CN, Nedal Y, Thabit A, Uwaezuoke OJ, Erebor JO, Ilomuanya MO, Mohamed RR, Soliman SMA, Elella MHA, Ebrahim NAA (2021) Nanoencapsulation for therapeutic and diagnostic applications: part II polysacharides and proteins. Nano Microencapsul Tech Appl. https://doi.org/10.5772/intechopen.88590

    Article  Google Scholar 

  21. Ngwuluka NC, Abu-Thabit NY, Uwaezuoke OJ, Erebor JO, Ilomuanya MO, Mohamed RR, Soliman SMA, Elella MHA, Ebrahim NA (2021) Natural polymers in micro-and nanoencapsulation for therapeutic and diagnostic applications: part I: lipids and fabrication techniques. Nano Microencapsul Tech Appl. https://doi.org/10.5772/intechopen.88590

    Article  Google Scholar 

  22. Pavel IA, Lakard S, Lakard B (2022) Flexible sensors based on conductive polymers. Chemosensors 10:97

    Article  CAS  Google Scholar 

  23. Yang T, Xu C, Liu C, Ye Y, Sun Z, Wang B, Luo Z (2022) Conductive polymer hydrogels crosslinked by electrostatic interaction with PEDOT: PSS dopant for bioelectronics application. Chem Eng J 429:132430

    Article  CAS  Google Scholar 

  24. Dedek V, Kupka P, Jakubec V, Sedajová K, Jayaramulu M, Otyepka M (2022) Metal-organic framework/conductive polymer hybrid materials for supercapacitors. Appl Mater Today 26:101387

    Article  Google Scholar 

  25. Wang XX, Yu GF, Zhang J, Yu M, Ramakrishna S, Long YZ (2021) Conductive polymer ultrafine fibers via electrospinning: preparation, physical properties and applications. Prog Mater Sci 115:100704

    Article  CAS  Google Scholar 

  26. Xu S, Shi XL, Dargusch M, Did Ch, Zou J, Chen ZG (2021) Conducting polymer-based flexible thermoelectric materials and devices: from mechanisms to applications. Prog Mater Sci 121:100840

    Article  CAS  Google Scholar 

  27. Ryan KR, Down MP, Hurst NJ, Keefe EM, Banks CE (2022) Additive manufacturing (3D printing) of electrically conductive polymers and polymer (nano)composites and their applications. eScience 2:365–381

    Article  Google Scholar 

  28. Bashir M, Bano A, Subhan A, Bashir A (2015) Recent developments and biological activities of N-substituted carbazole derivatives : a review. Molecules 20:13496–13517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Głuszy A (2015) Biological potential of carbazole derivatives. Eur J Med Chem 94:405–426

    Article  Google Scholar 

  30. Mahmood S, Moulood B, Fakri Y (2022) A review on the biological potentials of carbazole and its derived products. Eurasian Chem Commun 4:495–512

    Google Scholar 

  31. Karon K, Lapkowski M (2015) Carbazole electrochemistry: a short review. J Solid State Electrochem 19:2601–2610

    Article  CAS  Google Scholar 

  32. KAI C, HAO J, KAI T, YEN C, TING K (2019) Opto-electrically and electro-optically controllable diaphragm aperture in a poly(N-vinylcarbazole) film-coated tandem-90°-twisted nematic liquid crystal cell. Opt Mater Express 9:2910–2923

    Article  Google Scholar 

  33. Konidena R, Thomas K, Wook J (2022) Recent advances in the design of multi-substituted carbazoles for optoelectronics: synthesis and structure-property outlook. Chem Photo Chem 6:1–30

    Google Scholar 

  34. Hsiao S, Wei S (2015) Electrochemical synthesis of electrochromic olycarbazole films from N-phenyl-3,6-bis(N-carbazolyl)carbazoles. Polym Chem 7:1–28

    CAS  Google Scholar 

  35. Elangovan N, Srinivasan A, Pugalmani S, Rajendiran N, Rajendran N (2017) Development of poly(vinylcarbazole)/alumina (nano)composite coatings for corrosion protection of 316L stainless steel in 3.5% NaCl medium. J Appl Polym Sci 2017:1–13

    Google Scholar 

  36. Bouriche O, Bouzerafa B, Kouadri H (2018) Electrochemical, optical and morphological properties of poly (N-vinylcarbazole/TiO2) and (N-vinylcarbazole/aniline)/TiO2 copolymer prepared by electrochemical polymerization. Polymers 2:111–122

    Article  Google Scholar 

  37. Giorgiana A (2016) A review on medical applications of poly(nvinylcarbazole) and its derivatives. Int J Polym Mater Polym Biomater 65:1–53

    Google Scholar 

  38. Tan S, Sarjadi M (2017) The recent development of carbazole-, benzothiadiazole-, and isoindigo-based copolymers for solar cells application: a review polymer. Science 59:479–496

    CAS  Google Scholar 

  39. Bekkar F, Bettahar F, Moreno I, Meghabar R, Hamadouche M, Hernáez E, Luis J, Ruiz-Rubio L (2020) Polycarbazole and its derivatives: synthesis and applications. A review of the last 10 years. Polymers 12:1–33

    Article  Google Scholar 

  40. Baibarac M, Cantu M, Sol J, Baltog I, Pastor N, Romero P (2007) Poly(N-vinyl carbazole) and carbon nanotubes based composites and their application to rechargeable lithium batteries. Compos Sci Technol 67:2556–2563

    Article  CAS  Google Scholar 

  41. Baibarac M, Baltog I, Mihut L, Mevellec J, Lefrant S (2009) Electropolymerization of N-ethylcarbazole on single walled carbon nanotubes-cyclic voltammetry, raman and FTIR studies. J Nanosci Nanotechnol 9:6195–6203

    Article  CAS  PubMed  Google Scholar 

  42. Priyadharshini K, Panda D, Peta K, Rathinavel S (2023) PNVC-grafted multiwalled carbon nanotube materials with enhanced mobility for electronic devices: applied surface science. Advances 13:100376

    Google Scholar 

  43. Yao H, Suna Y, Lin X, Tang Y, Huanga L (2007) Electrochemical characterization of poly(eriochrome black T) modified glassy carbon electrode and its application to simultaneous determination of dopamine, ascorbic acid and uric acid. Electrochim Acta 52:6165–6171

    Article  CAS  Google Scholar 

  44. Edris NMA, Abdullah J, Kamaruzaman S, Saiman MI, Sulaiman Y (2018) Electrochemical reduced graphene oxide-poly (eriochrome black T)/gold nanoparticles modified glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. Arab J Chem. https://doi.org/10.1016/j.arabjc.2018.09.002

    Article  Google Scholar 

  45. Gilbert O, Swamy BEK, Chandra U, Sherigara BS (2009) Electrocatalytic oxidation of dopamine and ascorbic acid at poly (eriochrome black-t) modified carbon paste electrode. Int J Electrochem Sci 4:582–591

    Article  CAS  Google Scholar 

  46. Chandra U, Swamy BEK, Gilbert O, Reddy S, Sherigara BS (2011) Determination of dopamine in presence of uric acid at poly (eriochrome black t) film modified graphite pencil electrode. Am J Anal Chem 2:262–269

    Article  CAS  Google Scholar 

  47. Wei Y, Luo L, Liu YDX, Chu Y (2013) A glassy carbon electrode modified with poly(eriochrome black T) for sensitive determination of adenine and guanine. Microchim Acta 180:887–893

    Article  CAS  Google Scholar 

  48. Wang L, Liao X, Ding Y, Gao F, Wang Q (2014) DNA biosensor based on a glassy carbon electrode modified with electropolymerized eriochrome black T. Microchim Acta 181:155–162

    Article  CAS  Google Scholar 

  49. Shetti NP, Ilager D, Malode SJ, Monga D, Basu S, Reddy KR (2020) Poly(eriochrome black T) modified electrode for electrosensing of methdilazine. Mater Sci Semicond Process 120:105261

    Article  CAS  Google Scholar 

  50. Lin L, Chen J, Lin Q, Chen W, Chen J, Yao H, Liu A, Lin X, Chen Y (2010) Electrochemical biosensor based on nanogold-modified poly-eriochrome black T film for BCR/ABL fusion gene assay by using hairpin LNA probe. Talanta 80:2113–2119

    Article  CAS  PubMed  Google Scholar 

  51. Liu X, Luo L, Ding Y, Kang Z, Ye D (2012) Simultaneous determination of L-cysteine and L-tyrosine using Au-nanoparticles/ poly-eriochrome black T film modified glassy carbon electrode. Bioelectrochemistry 86:38–45

    Article  CAS  PubMed  Google Scholar 

  52. Bouriche O, Maaouche N, Kouadri H, Lerari D (2021) Electrochemical and spectroscopic characterization of a new polymer based on eriochrome black T doped by carbon nanotubes. Bull Mater Sci 44:76

    Article  CAS  Google Scholar 

  53. Ambrose JF, Nelson RF (2021) Anodic oxidation pathways of carbazoles I: carbazole and N-substituted derivatives. J Electrochem Soc 115:11

    Google Scholar 

  54. Gonza´lez JMR, Martı´nez MA, Martı´nez JAB, Rivera E, Gonza´lez I, Roquero P (2006) Influence of the acidity level on the electropolymerization of N-vinylcarbazole: electrochemical study and characterization of poly(3,6-N-vinylcarbazole). Polymer 47:6664–6672

    Article  Google Scholar 

  55. González JMR, Roquero P, Rivera E (2009) A comparative investigation between poly(nvinylcarbazole) and poly(3,6-N-vinylcarbazole): spectroscopy, conductivity, thermal and optical properties. Des Monomers Polym 12:233–245

    Article  Google Scholar 

  56. Chen Z, Jiang J, Shen G, Yu R (2005) Impedance immunosensor based on receptor protein adsorbed directly on porous gold film. Anal Chim Acta 553:190–195

    Article  CAS  Google Scholar 

  57. Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y (2009) Glucose oxidase–graphene–chitosan modified electrode for directelectrochemistry and glucose sensing. Biosens Bioelectron 25:901–905

    Article  CAS  PubMed  Google Scholar 

  58. Touazi Y, Abdi A, Leshaf A, Khimeche K (2020) Influence of heat treatment of iron oxide on its effectiveness as anticorrosion pigment in epoxy based coatings. Prog Org Coat. https://doi.org/10.1016/j.porgcoat.2019.105458

    Article  Google Scholar 

  59. Saib F, Touahra F, Azoudj Y, Chebout R, Lerari D, Bachari K, Abdi A, Trari M (2022) Preparation and photoelectrochemical characterization of the Ca2Co2O5, as novel photocatalyst for the H2 photo-production. J Solid State Electrochem 26:607–619

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support from the Ministry of Higher Education and Scientific Research (MESRS) and the General Agency of Scientific Research and Technological Development (DGRSDT), in the frame of the national projects is gratefully

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ouahiba Bouriche or Djahida Lerari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouriche, O., Maouche, N., Kouadri, H. et al. Synthesis of novel copolymer (nano)composite based on N-vinylcarbazole and black eriochrome using electro-polymerization method. Polym. Bull. 81, 6703–6719 (2024). https://doi.org/10.1007/s00289-023-05014-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-05014-x

Keywords

Navigation