Skip to main content

Advertisement

Log in

Hydrophobically modified carboxymethylcellulose: additive for aqueous drilling fluids under low and high temperature conditions

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The use of additives from renewable sources in drilling fluids has received special attention due to crescent environmental regulations. At the same time, increasing demand for energy sources stimulates the search for products that can withstand severe perforation conditions. In this scenario, this work aimed at the chemical modification of a polysaccharide, carboxymethylcellulose (CMC), through insertion of hydrophobic groups of dodecylamine (DDA), and its investigation as an additive in aqueous fluids. The performance was evaluated via rheological and filtration standards measurements in oil industry for low and high temperature reservoirs. Rheological parameters did not change significantly either with aging or with temperature of data acquisition. Fluid with CMC exhibited higher filtrate volume than the corresponding CMC–DDA for all conditions studied. In the presence of CMC, the filtrate volume increased after aging under low (10% of increase) and high (69.2% of increase) temperature and pressure. On the other hand, CMC–DDA provided more controlled filtration after aging at low (8.3% of reduction) and high (only 25.9% of increase) temperature and pressure. This behavior indicates that CMC–DDA is a promising additive to control the filtration of aqueous drilling fluids at different reservoir conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. McMullen RL, Ozkan S, Gillece T (2022) Physicochemical properties of cellulose ethers. Cosmetics 9(3):52. https://doi.org/10.3390/cosmetics9030052

    Article  CAS  Google Scholar 

  2. Saide VGP, de Oliveira BR, do Nascimento CS, Borges RFO, Scheid CM, Calçada LA (2021) Influence of solids concentration and solid/polymer interaction on the apparent viscosity of drilling fluids. Braz J Chem Eng 38(1):47–60. https://doi.org/10.1007/s43153-020-00072-4

    Article  CAS  Google Scholar 

  3. Chen L et al (2020) Dialdehyde carboxymethyl cellulose-zein conjugate as water-based nanocarrier for improving the efficacy of pesticides. Ind Crops Prod 150:112358. https://doi.org/10.1016/j.indcrop.2020.112358

    Article  CAS  Google Scholar 

  4. Abbas G, Irawan S, Memon KR, Khan J (2020) Application of cellulose-based polymers in oil well cementing. J Petrol Explor Prod Technol 10(2):319–325. https://doi.org/10.1007/s13202-019-00800-8

    Article  CAS  Google Scholar 

  5. Pettignano A, Charlot A, Fleury E (2019) Carboxyl-functionalized derivatives of carboxymethyl cellulose: towards advanced biomedical applications. Polym Rev 59(3):510–560. https://doi.org/10.1080/15583724.2019.1579226

    Article  CAS  Google Scholar 

  6. Chen N, Wang H, Ling C, Vermerris W, Wang B, Tong Z (2019) Cellulose-based injectable hydrogel composite for pH-responsive and controllable drug delivery. Carbohydr Polym 225:115207. https://doi.org/10.1016/j.carbpol.2019.115207

    Article  CAS  PubMed  Google Scholar 

  7. Antosik AK, Piątek A, Wilpiszewska K (2019) Carboxymethylated starch and cellulose derivatives-based film as human skin equivalent for adhesive properties testing. Carbohydr Polym 222:115014. https://doi.org/10.1016/j.carbpol.2019.115014

    Article  CAS  PubMed  Google Scholar 

  8. da Câmara PCF, Madruga LYC, Marques NDN, Balaban RC (2021) Evaluation of polymer/bentonite synergy on the properties of aqueous drilling fluids for high-temperature and high-pressure oil wells. J Mol Liquids 327:114808. https://doi.org/10.1016/j.molliq.2020.114808

    Article  CAS  Google Scholar 

  9. Kelessidis VC, Poulakakis E, Chatzistamou V (2011) Use of carbopol 980 and carboxymethyl cellulose polymers as rheology modifiers of sodium-bentonite water dispersions. Appl Clay Sci 54(1):63–69. https://doi.org/10.1016/j.clay.2011.07.013

    Article  CAS  Google Scholar 

  10. Zhao X, Qiu Z, Wang M, Huang W, Zhang S (2017) Performance evaluation of a highly inhibitive water-based drilling fluid for ultralow temperature wells. J Energy Resour Technol 140(1):012906. https://doi.org/10.1115/1.4037712

    Article  CAS  Google Scholar 

  11. Lima BLB, Marques NN, Souza EA, Balaban RC (2022) Polysaccharide derivative as an additive in Olefin-based drilling fluid. J Mol Liquids 364:120023. https://doi.org/10.1016/j.molliq.2022.120023

    Article  CAS  Google Scholar 

  12. Brito BMA, Bastos PM, Gama AJA, Cartaxo JM, Neves GA, Ferreira HC (2018) Effect of carboxymethylcellulose on the rheological and filtration properties of bentonite clay samples determined by experimental planning and statistical analysis. Ceramica 64(370):254–265. https://doi.org/10.1590/0366-69132018643702332

    Article  CAS  Google Scholar 

  13. Soares ASF, Scheid CM, Marques MRC, Calçada LA (2020) Effect of solid particle size on the filtration properties of suspension viscosified with carboxymethylcellulose and xantham gum. J Petrol Sci Eng 185:106615. https://doi.org/10.1016/j.petrol.2019.106615

    Article  CAS  Google Scholar 

  14. Li XL, Jiang GC, Xu Y, Deng ZQ, Wang K (2022) A new environmentally friendly water-based drilling fluids with laponite nanoparticles and polysaccharide/polypeptide derivatives. Petrol Sci. https://doi.org/10.1016/j.petsci.2022.07.003

    Article  Google Scholar 

  15. Li Z et al (2020) Improving emulsion stability based on ovalbumin-carboxymethyl cellulose complexes with thermal treatment near ovalbumin isoelectric point. Sci Rep 10(1):3456. https://doi.org/10.1038/s41598-020-60455-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hao L et al (2020) Carboxymethyl cellulose capsulated zein as pesticide nano-delivery system for improving adhesion and anti-UV properties. Carbohydr Polym 231:115725. https://doi.org/10.1016/j.carbpol.2019.115725

    Article  CAS  PubMed  Google Scholar 

  17. Benghanem S, Chetouani A, Elkolli M, Bounekhel M, Benachour D (2017) Effects of physical and chemical modification on biological activities of chitosan/ carboxymethylcelluse based hydrogels. J Chil Chem Soc 62(1):3376–3380. https://doi.org/10.4067/S0717-97072017000100014

    Article  CAS  Google Scholar 

  18. do Nascimento Marques N, de Lima BLB, de Carvalho Balaban R (2016) Carboxymethylcellulose grafted to amino-terminated poly(N-isopropylacrylamide): preparation, characterization and evaluation of the thermoassociative behaviour at low concentrations. Macromol Symp 367(1):126–135. https://doi.org/10.1002/masy.201600004

    Article  CAS  Google Scholar 

  19. Mondal MIH, Ahmed F (2016) Synthesis and grafting of carboxymethyl cellulose from environmental pollutant cellulosic wastes of textile industry. Res J Text Appar 20(3):126–135. https://doi.org/10.1108/RJTA-08-2016-0018

    Article  Google Scholar 

  20. Fu W, Wang Z, Zhang J, Cao Y, Sun B (2020) Investigation of rheological properties of methane hydrate slurry with carboxmethylcellulose. J Petrol Sci Eng 184:106504. https://doi.org/10.1016/j.petrol.2019.106504

    Article  CAS  Google Scholar 

  21. Caenn R, Darley HCH, Gray GR (2011) Composition and properties of drilling and completion fluids. Gulf Professional Publishing, Houston. https://doi.org/10.1016/C2009-0-64504-9

  22. Fagundes KRS, Da Souza Luz RC, Fagundes FP, De Carvalho Balaban R (2018) Effect of carboxymethylcellulose on colloidal properties of calcite suspensions in drilling fluids. Polimeros 28(4):373–379. https://doi.org/10.1590/0104-1428.11817

    Article  Google Scholar 

  23. Hughes TL, Jones TGJ, Houwen OH (1993) Chemical characterization of CMC and its relationship to drilling-mud rheology and fluid loss. SPE Drill Complet 8(3):157–164

    Article  Google Scholar 

  24. Khalil AA, Adnan MS (2020) Effect of mud rheology on cuttings' transport in drilling operations. In 3rd international conference on engineering sciences, ICES 2019, vol 671: Institute of Physics Publishing, 1 edn. https://doi.org/10.1088/1757-899X/671/1/012067

  25. de Morais SC, Cardoso OR, de Carvalho Balaban R (2018) Thermal stability of water-soluble polymers in solution. J Mol Liquids 265:818–823. https://doi.org/10.1016/j.molliq.2018.07.033

    Article  CAS  Google Scholar 

  26. Arhant M, Lolive E, Bonnemains T, Davies P (2022) Effect of aging on the fatigue crack growth properties of carbon-polyamide 6 thermoplastic composites using the multi ΔG-control method. Compos Part A: Appl Sci Manuf 161:107105. https://doi.org/10.1016/j.compositesa.2022.107105

    Article  CAS  Google Scholar 

  27. Zhang LM, Tan YB, Li ZM (2001) New water-soluble ampholytic polysaccharides for oilfield drilling treatment: a preliminary study. Carbohydr Polym 44(3):255–260. https://doi.org/10.1016/S0144-8617(00)00225-3

    Article  CAS  Google Scholar 

  28. Dias F, Souza R, Lucas E (2018) Rheological behavior of drilling fluids containing hydrophobically modified starch for filtrate reduction. Chem Chem Technol 12:86–92. https://doi.org/10.23939/chcht12.01.086

    Article  CAS  Google Scholar 

  29. Marques NDN et al (2019) Turning industrial waste into a valuable bioproduct: starch from mango kernel derivative to oil industry mango starch derivative in oil industry. J Renew Mater 7(2):139–152. https://doi.org/10.32604/jrm.2019.00040

    Article  CAS  Google Scholar 

  30. Sun J et al (2022) Synthesis of hydrophobic associative polymers to improve the rheological and filtration performance of drilling fluids under high temperature and high salinity conditions. J Petrol Sci Eng 209:109808. https://doi.org/10.1016/j.petrol.2021.109808

    Article  CAS  Google Scholar 

  31. Ahmad HM, Iqbal T, Kamal MS, Al-Harthi MA (2020) Influence of hydrophobically modified polymer and titania nanoparticles on shale hydration and swelling properties. Energy Fuels 34(12):16456–16468. https://doi.org/10.1021/acs.energyfuels.0c02445

    Article  CAS  Google Scholar 

  32. Hamad BA et al (2020) A novel amphoteric polymer as a rheology enhancer and fluid-loss control agent for water-based drilling muds at elevated temperatures. ACS Omega 5(15):8483–8495. https://doi.org/10.1021/acsomega.9b03774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jabbar FJ (2021) Synthesis, characterization and rheological properties of copolymer based on poly (para-isobutyl-N-Phenethyl acrylamide-Acrylamide) with drilling mud. J Polym Res 28(5):178. https://doi.org/10.1007/s10965-021-02531-z

    Article  CAS  Google Scholar 

  34. Lei M et al. (2021) Application of environmentally friendly amphoteric polyacrylamide hydrophobically modified with plant oil as additive in water-based drilling fluid. In journal of physics: conference series, vol 2009: IOP Publishing Ltd, 1 edn. https://doi.org/10.1088/1742-6596/2009/1/012029

  35. de Lima BLB, Marques NDN, Villetti MA, de Balaban RC (2019) HPAM-g-PEOPPO: rheological modifiers in aqueous media of high temperature and high ionic strength. J Appl Polym Sci 136(18):47453. https://doi.org/10.1002/app.47453

    Article  CAS  Google Scholar 

  36. Hourdet D, L’Alloret F, Audebert R (1994) Reversible thermothickening of aqueous polymer solutions. Polymer 35(12):2624–2630. https://doi.org/10.1016/0032-3861(94)90390-5

    Article  CAS  Google Scholar 

  37. Charpentier D, Mocanu G, Carpov A, Chapelle S, Merle L, Muller G (1997) New hydrophobically modified carboxymethylcellulose derivatives. Carbohydr Polym 33(2–3):177–186. https://doi.org/10.1016/S0144-8617(97)00031-3

    Article  CAS  Google Scholar 

  38. Bokias G, Mylonas Y, Staikos G, Bumbu GG, Vasile C (2001) Synthesis and aqueous solution properties of novel thermoresponsive graft copolymers based on a carboxymethylcellulose backbone. Macromolecules 34(14):4958–4964. https://doi.org/10.1021/ma010154e

    Article  CAS  Google Scholar 

  39. Dulong V, Mocanu G, Picton L, Le Cerf D (2012) Amphiphilic and thermosensitive copolymers based on pullulan and Jeffamine®: synthesis, characterization and physicochemical properties. Carbohydr Polym 87(2):1522–1531. https://doi.org/10.1016/j.carbpol.2011.09.049

    Article  CAS  Google Scholar 

  40. Karakasyan C, Lack S, Brunel F, Maingault P, Hourdet D (2008) Synthesis and rheological properties of responsive thickeners based on polysaccharide architectures. Biomacromol 9(9):2419–2429. https://doi.org/10.1021/bm800393s

    Article  CAS  Google Scholar 

  41. Gupta NR et al (2015) Synthesis and characterization of PEPO grafted carboxymethyl guar and carboxymethyl tamarind as new thermo-associating polymers. Carbohydr Polym 117:331–338. https://doi.org/10.1016/j.carbpol.2014.09.073

    Article  CAS  PubMed  Google Scholar 

  42. Pereira BHDA, Marques NDN, Lima BLBD, Villetti MA, Balaban RDC (2018) Study of the thermoassociative process in carboxymethylcellulose derivatives. J Mol Liquids 272:1041–1047. https://doi.org/10.1016/j.molliq.2018.10.126

    Article  CAS  Google Scholar 

  43. Marques NDN, Balaban RDC, Halila S, Borsali R (2018) Synthesis and characterization of carboxymethylcellulose grafted with thermoresponsive side chains of high LCST: the high temperature and high salinity self-assembly dependence. Carbohydr Polym 184:108–117. https://doi.org/10.1016/j.carbpol.2017.12.053

    Article  CAS  PubMed  Google Scholar 

  44. de Vos S, Möller M, Visscher K, Mijnlieff PF (1994) Synthesis and characterization of poly(acrylamide)-graft-poly(ethylene oxide-co-propylene oxide). Polymer 35(12):2644–2650. https://doi.org/10.1016/0032-3861(94)90393-X

    Article  Google Scholar 

  45. Hourdet D, L’Alloret F, Audebert R (1997) Synthesis of thermoassociative copolymers. Polymer 38(10):2535–2547

    Article  CAS  Google Scholar 

  46. API RECOMMENDED PRACTICE 13B-1 (2019) “Recommended Practice for Field Testing of Water-Based Drilling Fluids,” (in English). API, Washington, DC, USA

  47. API RECOMMENDED PRACTICE 13B-2 (2019) “Recommended Practice for Field Testing of Oil-Based Drilling Fluids,” (in English). API, Washington, DC, USA

  48. Caraschi JC, Campana Filho SP (1999) Influência do grau de substituição e da distribuição de substituintes sobre as propriedades de equilíbrio de carboximetilcelulose em solução aquosa. Polímeros 9:70–77

    Article  CAS  Google Scholar 

  49. Sehgal D, Vijay IK (1994) A method for the high efficiency of water-soluble carbodiimide-mediated amidation. Anal Biochem 218(1):87–91. https://doi.org/10.1006/abio.1994.1144

    Article  CAS  PubMed  Google Scholar 

  50. Nakajima N, Ikada Y (1995) Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media. Bioconjugate Chem 6(1):123–130. https://doi.org/10.1021/bc00031a015

    Article  CAS  Google Scholar 

  51. Fredrick R, Podder A, Viswanathan A, Bhuniya S (2019) Synthesis and characterization of polysaccharide hydrogel based on hydrophobic interactions. J Appl Polym Sci 136(25):47665. https://doi.org/10.1002/app.47665

    Article  CAS  Google Scholar 

  52. Ripmeester M, Duford DA, Yuan S (2020) Understanding the behaviour of dodecylamine as a model cationic collector in oil sands tailings dewatering applications using a novel FTIR based method. Can J Chem Eng 98(7):1471–1482. https://doi.org/10.1002/cjce.23707

    Article  CAS  Google Scholar 

  53. Pettignano A, Charlot A, Fleury E (2019) Solvent-free synthesis of amidated carboxymethyl cellulose derivatives: effect on the thermal properties. Polymers 11(7):1227. https://doi.org/10.3390/polym11071227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lei M et al (2020) Synthesis, characterization, and performance of carboxymethyl chitosan with different molecular weight as additive in water-based drilling fluid. J Mol Liquids 310:113135. https://doi.org/10.1016/j.molliq.2020.113135

    Article  CAS  Google Scholar 

  55. Deyerle BA, Zhang Y (2011) Effects of hofmeister anions on the aggregation behavior of PEO–PPO–PEO triblock copolymers. Langmuir 27(15):9203–9210. https://doi.org/10.1021/la201463g

    Article  CAS  PubMed  Google Scholar 

  56. Lopez CG, Colby RH, Cabral JT (2018) Electrostatic and hydrophobic Interactions in NaCMC aqueous solutions: effect of degree of substitution. Macromolecules 51(8):3165–3175. https://doi.org/10.1021/acs.macromol.8b00178

    Article  CAS  Google Scholar 

  57. Senffi L, Hotzaii D, Repetteiii WL (2010) Rhelogycal behaviour of cement pastes with addition of silica fume, nanosilica and polycarboxilic dispersant. Rev Mater 15(1):12–20. https://doi.org/10.1590/s1517-70762010000100003

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to PETROBRAS S/A (SAP 4600580022 and 4600568098) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq grant 304339/2019-9) for their financial support, as well as to the Institute of Chemistry from UFRN for the FTIR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosangela de Carvalho Balaban.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima, B.L.B., do Nascimento Marques, N., de Souza, E.A. et al. Hydrophobically modified carboxymethylcellulose: additive for aqueous drilling fluids under low and high temperature conditions. Polym. Bull. 81, 5477–5493 (2024). https://doi.org/10.1007/s00289-023-04971-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04971-7

Keywords

Navigation