Skip to main content
Log in

Preparation of pH/temperature-responsive semi-IPN hydrogels based on sodium alginate and humic acid as slow-release and water-retention fertilizers

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Herein, a semi-interpenetrating network (semi-IPN) hydrogel (SH/PNA) was prepared by simple free radical polymerization using N-isopropylacrylamide and 2-acrylamide-2-methylpropanesulfonic acid as monomers, poly(ethylene glycol) dimethacrylate as a crosslinking agent, and sodium alginate and humic acid as filled biomolecules. Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, and rheometer were used to characterize the structure and properties of the samples. The effect of feeding ratios on the gel mass fraction and swelling properties of the SH/PNA hydrogel was explored to optimize its preparation conditions. The swelling behavior under different pH and temperatures was investigated. The experimental result showed that the SH/PNA hydrogel had excellent water absorption capacity and pH/temperature dual responsiveness. Moreover, SH/PNA hydrogel was used as a carrier of urea to prepare slow-release and water-retention fertilizer by in situ loading method, and slow-release properties of urea in water and soil were measured. Taking into account its good ability for controlled release and water retention, the WSRF was expected to be a promising low-cost, environmentally friendly fertilizer that can be used in agriculture and horticulture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sim DHH, Tan IAW, Lim LLP, Hameed BH (2021) Encapsulated biochar-based sustained release fertilizer for precision agriculture: a review. J Clean Prod 303:127018. https://doi.org/10.1016/j.jclepro.2021.127018

    Article  CAS  Google Scholar 

  2. Rudmin M, Banerjee S, Yakich T et al (2020) Formulation of a slow-release fertilizer by mechanical activation of smectite/glauconite and urea mixtures. Appl Clay Sci 196:105775. https://doi.org/10.1016/j.clay.2020.105775

    Article  CAS  Google Scholar 

  3. Abd El-Aziz ME, Salama DM, Morsi SMM, Youssef AM, El-Sakhawy M (2021) Development of polymer composites and encapsulation technology for slow-release fertilizers. Rev Chem Eng 38:603–616. https://doi.org/10.1515/revce-2020-0044

    Article  CAS  Google Scholar 

  4. Saha BK, Rose MT, Wong VNL, Cavagnaro TR, Patti AF (2019) A slow release brown coal-urea fertiliser reduced gaseous N loss from soil and increased silver beet yield and N uptake. Sci Total Environ 649:793–800. https://doi.org/10.1016/j.scitotenv.2018.08.145

    Article  CAS  PubMed  Google Scholar 

  5. Dong G, Mu Z, Liu D et al (2021) Starch phosphate carbamate hydrogel based slow-release urea formulation with good water retentivity. Int J Biol Macromol 190:189–197. https://doi.org/10.1016/j.ijbiomac.2021.08.234

    Article  CAS  PubMed  Google Scholar 

  6. Li HF, An SD, Zhang LY et al (2021) Urea fertilizer with precisely regulable slow-release performance by complexing with random copolyester. J Environ Chem Eng 9:105120. https://doi.org/10.1016/j.jece.2021.105120

    Article  CAS  Google Scholar 

  7. Tanan W, Panichpakdee J, Suwanakood P, Saengsuwan S (2021) Biodegradable hydrogels of cassava starch-g-polyacrylic acid/natural rubber/polyvinyl alcohol as environmentally friendly and highly efficient coating material for slow-release urea fertilizers. J Ind Eng Chem 101:237–252. https://doi.org/10.1016/j.jiec.2021.06.008

    Article  CAS  Google Scholar 

  8. Xiang Y, Ru X, Shi J et al (2017) Preparation and properties of a novel semi-IPN slow-release fertilizer with the function of water retention. J Agric Food Chem 65:10851–10858. https://doi.org/10.1021/acs.jafc.7b03827

    Article  CAS  PubMed  Google Scholar 

  9. Ye HM, Li HF, Wang CS et al (2020) Degradable polyester/urea inclusion complex applied as a facile and environment-friendly strategy for slow-release fertilizer: performance and mechanism. Chem Eng J 381:122704. https://doi.org/10.1016/j.cej.2019.122704

    Article  CAS  Google Scholar 

  10. Guo X, Wang Y, Qin Y, Shen P, Peng Q (2020) Structures, properties and application of alginic acid: a review. Int J Biol Macromol 162:618–628. https://doi.org/10.1016/j.ijbiomac.2020.06.180

    Article  CAS  PubMed  Google Scholar 

  11. Guo L, Wang Y, Wang M et al (2021) Synthesis of bio-based MIL-100(Fe)@CNF-SA composite hydrogel and its application in slow-release N-fertilizer. J Clean Prod 324:129274. https://doi.org/10.1016/j.jclepro.2021.129274

    Article  CAS  Google Scholar 

  12. Bashir S, Hina M, Iqbal J et al (2020) Fundamental concepts of hydrogels: synthesis, properties, and their applications. Polymers (Basel) 12:2702. https://doi.org/10.3390/polym12112702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang X, Li J, Luo J et al (2021) Research progress on double-network hydrogels. Mater Today Commun. 29:102757. https://doi.org/10.1016/j.mtcomm.2021.102757

    Article  CAS  Google Scholar 

  14. Hu S, Zhi Y, Shan S, Ni Y (2022) Research progress of smart response composite hydrogels based on nanocellulose. Carbohydr Polym 275:118741. https://doi.org/10.1016/j.carbpol.2021.118741

    Article  CAS  PubMed  Google Scholar 

  15. Wu Z, Zhang P, Zhang H et al (2022) Tough porous nanocomposite hydrogel for water treatment. J Hazard Mater 421:126754. https://doi.org/10.1016/j.jhazmat.2021.126754

    Article  CAS  PubMed  Google Scholar 

  16. Li J, Jia X, Yin L (2021) Hydrogel: diversity of structures and applications in food science. Food Rev Int 37(3):313–372. https://doi.org/10.1080/87559129.2020.1858313

    Article  CAS  Google Scholar 

  17. Pourjavadi A, Heydarpour R, Tehrani ZM (2021) Multi-stimuli-responsive hydrogels and their medical applications. New J Chem 45:15705–15717. https://doi.org/10.1039/d1nj02260a

    Article  CAS  Google Scholar 

  18. Maiz-Fernandez S, Perez-Alvarez L, Ruiz-Rubio L, Vilas-Vilela JL, Lanceros-Mendez S (2020) Polysaccharide-based in situ self-healing hydrogels for tissue engineering applications. Polymers 12:2261. https://doi.org/10.3390/polym12102261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zenoozi S, Mohamad Sadeghi GM, Rafiee M (2020) Synthesis and characterization of biocompatible semi-interpenetrating polymer networks based on polyurethane and cross-linked poly (acrylic acid). Eur Polym J 140:109974. https://doi.org/10.1016/j.eurpolymj.2020.109974

    Article  CAS  Google Scholar 

  20. Chen J, Liu M, Liu H et al (2010) Synthesis and properties of thermo- and pH-sensitive poly(diallyldimethylammonium chloride)/poly(N, N-diethylacrylamide) semi-IPN hydrogel. Chem Eng J 159:247–256. https://doi.org/10.1016/j.cej.2010.02.034

    Article  CAS  Google Scholar 

  21. Rungrod A, Kapanya A, Punyodom W et al (2022) Synthesis and characterization of semi-IPN hydrogels composed of sodium 2-acrylamido-2-methylpropanesulfonate and poly(ε-caprolactone) diol for controlled drug delivery. Eur Polym J 164:110978. https://doi.org/10.1016/j.eurpolymj.2021.110978

    Article  CAS  Google Scholar 

  22. Liu S, Wu Q, Sun X et al (2021) Novel alginate-cellulose nanofiber-poly(vinyl alcohol) hydrogels for carrying and delivering nitrogen, phosphorus and potassium chemicals. Int J Biol Macromol 172:330–340. https://doi.org/10.1016/j.ijbiomac.2021.01.063

    Article  CAS  PubMed  Google Scholar 

  23. Vo PT, Nguyen HT, Trinh HT et al (2021) The nitrogen slow-release fertilizer based on urea incorporating chitosan and poly(vinyl alcohol) blend. Environ Technol Innov 22:101528. https://doi.org/10.1016/j.eti.2021.101528

    Article  CAS  Google Scholar 

  24. Lin X, Guo L, Shaghaleh H et al (2021) A TEMPO-oxidized cellulose nanofibers/MOFs hydrogel with temperature and pH responsiveness for fertilizers slow-release. Int J Biol Macromol 191:483–491. https://doi.org/10.1016/j.ijbiomac.2021.09.075

    Article  CAS  PubMed  Google Scholar 

  25. Khattab TA, Kamel S (2022) Advances in polysaccharide-based hydrogels: Self-healing and electrical conductivity. J Mol Liq 352:118712. https://doi.org/10.1016/j.molliq.2022.118712

    Article  CAS  Google Scholar 

  26. Guilherme MR, Aouada FA, Fajardo AR et al (2015) Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: a review. Eur Polym J 72:365–385. https://doi.org/10.1016/j.eurpolymj.2015.04.017

    Article  CAS  Google Scholar 

  27. Zhu B, Ni F, Xiong Q, Yao Z (2021) Marine oligosaccharides originated from seaweeds: source, preparation, structure, physiological activity and applications. Crit Rev Food Sci Nutr 61:60–74. https://doi.org/10.1080/10408398.2020.1716207

    Article  CAS  PubMed  Google Scholar 

  28. Lakouraj MM, Rezaei M, Hasantabar V (2021) Synthesis, characterization and in-vitro prolonged release of L-DOPA using a novel amphiphilic hydrogel based on sodium alginate-polypyrrole. Int J Biol Macromol 193:609–618. https://doi.org/10.1016/j.ijbiomac.2021.10.171

    Article  CAS  PubMed  Google Scholar 

  29. Xiao G, Li F, Li Y et al (2022) A novel biomass material composite hydrogel based on sodium alginate. Colloids Surf A Physicochem Eng Asp 648:129383. https://doi.org/10.1016/j.colsurfa.2022.129383r

    Article  CAS  Google Scholar 

  30. Shang W, Liu Y, Wan W et al (2017) Hybrid 3D printing and electrodeposition approach for controllable 3D alginate hydrogel formation. Biofabrication 9:025032. https://doi.org/10.1088/1758-5090/aa6ed8

    Article  CAS  PubMed  Google Scholar 

  31. Pashaei-Fakhri S, Peighambardoust SJ, Foroutan R, Arsalani N, Ramavandi B (2021) Crystal violet dye sorption over acrylamide/graphene oxide bonded sodium alginate nanocomposite hydrogel. Chemosphere 270:129419. https://doi.org/10.1016/j.chemosphere.2020.129419

    Article  CAS  PubMed  Google Scholar 

  32. Afshar M, Dini G, Vaezifar S, Mehdikhani M, Movahedi B (2020) Preparation and characterization of sodium alginate/polyvinyl alcohol hydrogel containing drug-loaded chitosan nanoparticles as a drug delivery system. J Drug Deliv Sci Tec 56:101530. https://doi.org/10.1016/j.jddst.2020.101530

    Article  CAS  Google Scholar 

  33. Arafa EG, Sabaa MW, Mohamed RR, Elzanaty AM, Abdel-Gawad OF (2022) Preparation of biodegradable sodium alginate/carboxymethylchitosan hydrogels for the slow-release of urea fertilizer and their antimicrobial activity. React Funct Polym 174:105243. https://doi.org/10.1016/j.reactfunctpolym.2022.105243

    Article  CAS  Google Scholar 

  34. Miao ZH, LiK LPY et al (2018) Natural humic-acid-based phototheranostic agent. Adv Healthc Mater 7(7):1701202. https://doi.org/10.1002/adhm.201701202

    Article  CAS  Google Scholar 

  35. Sirousazar M, Khodamoradi P (2020) Freeze-thawed humic acid/polyvinyl alcohol supramolecular hydrogels. Mater Today Commun 22:100719. https://doi.org/10.1016/j.mtcomm.2019.100719

    Article  CAS  Google Scholar 

  36. Yang F, Antonietti M (2020) Artificial humic acids: sustainable materials against climate change. Adv Sci (Weinh) 7:1902992. https://doi.org/10.1002/advs.201902992

    Article  CAS  PubMed  Google Scholar 

  37. Yalman V, Laçin NT (2019) Development of humic acid and alginate-based wound dressing and evaluation on inflammation. Mater Technol 34:705–717. https://doi.org/10.1080/10667857.2019.1619961

    Article  CAS  Google Scholar 

  38. Chen R, Zhang Y, Shen L et al (2015) Lead(II) and methylene blue removal using a fully biodegradable hydrogel based on starch immobilized humic acid. Chem Eng J 268:348–355. https://doi.org/10.1016/j.cej.2015.01.081

    Article  CAS  Google Scholar 

  39. Afzal MZ, Yue R, Sun X-F, Song C, Wang S-G (2019) Enhanced removal of ciprofloxacin using humic acid modified hydrogel beads. J Colloid Interface Sci 543:76–83. https://doi.org/10.1016/j.jcis.2019.01.083

    Article  CAS  PubMed  Google Scholar 

  40. Li H, Li Y, Li C (2013) Characterization of humic acids and fulvic acids derived from sewage sludge. Asian J Chem 25:10087–10091. https://doi.org/10.14233/ajchem.2013.15162

    Article  CAS  Google Scholar 

  41. Wang W, Qu K, Zhang X, Teng M, Huang Z (2021) Integrated instillation technology for the synthesis of a pH-responsive sodium alginate/biomass charcoal soil conditioner for controlled release of humic acid and soil remediation. J Agric Food Chem 69:13386–13397. https://doi.org/10.1021/acs.jafc.1c04121

    Article  CAS  PubMed  Google Scholar 

  42. Ramli RA (2019) Slow release fertilizer hydrogels: a review. Polym Chem 10:6073–6090. https://doi.org/10.1039/c9py01036j

    Article  CAS  Google Scholar 

  43. Wang L, Xin J, Nai H, Zheng X (2021) Effects of different fertilizer applications on nitrogen leaching losses and the response in soil microbial community structure. Environ Technol Innov 23:101608. https://doi.org/10.1016/j.eti.2021.101608

    Article  CAS  Google Scholar 

  44. Huanbutta K, Sriamornsak P, Limmatvapirat S et al (2011) Swelling kinetics of spray-dried chitosan acetate assessed by magnetic resonance imaging and their relation to drug release kinetics of chitosan matrix tablets. Eur J Pharm Biopharm 77:320–326. https://doi.org/10.1016/j.ejpb.2010.11.019

    Article  CAS  PubMed  Google Scholar 

  45. Wei H, Wang H, Chu H, Li J (2019) Preparation and characterization of slow-release and water-retention fertilizer based on starch and halloysite. Int J Biol Macromol 133:1210–1218. https://doi.org/10.1016/j.ijbiomac.2019.04.183

    Article  CAS  PubMed  Google Scholar 

  46. Kamoun EA, Fahmy A, Taha TH et al (2018) Thermo-and pH-sensitive hydrogel membranes composed of poly(N-isopropylacrylamide)-hyaluronan for biomedical applications: Influence of hyaluronan incorporation on the membrane properties. Int J Biol Macromol 106:158–167. https://doi.org/10.1016/j.ijbiomac.2017.08.011

    Article  CAS  PubMed  Google Scholar 

  47. Zheng D, Bai B, He Y, Hu N, Wang H (2020) Synthesis and characterization of dopamine-modified Ca-alginate/poly(N-isopropylacrylamide) microspheres for water retention and multi-responsive controlled release of agrochemicals. Int J Biol Macromol 160:518–530. https://doi.org/10.1016/j.ijbiomac.2020.05.234

    Article  CAS  PubMed  Google Scholar 

  48. Khalid I, Ahmad M, Usman Minhas M, Barkat K (2018) Synthesis and evaluation of chondroitin sulfate based hydrogels of loxoprofen with adjustable properties as controlled release carriers. Carbohydr Polym 181:1169–1179. https://doi.org/10.1016/j.carbpol.2017.10.092

    Article  CAS  PubMed  Google Scholar 

  49. Khanum H, Ullah K, Murtaza G, Khan SA (2018) Fabrication and in vitro characterization of HPMC-g-poly(AMPS) hydrogels loaded with loxoprofen sodium. Int J Biol Macromol 120:1624–1631. https://doi.org/10.1016/j.ijbiomac.2018.09.184

    Article  CAS  PubMed  Google Scholar 

  50. Ghobashy MM, Elbarbary AM, Hegazy DE (2021) Gamma radiation synthesis of a novel amphiphilic terpolymer hydrogel pH-responsive based chitosan for colon cancer drug delivery. Carbohydr Polym 263:117975. https://doi.org/10.1016/j.carbpol.2021.117975

    Article  CAS  PubMed  Google Scholar 

  51. Zhao D, Feng M, Zhang L et al (2021) Facile synthesis of self-healing and layered sodium alginate/polyacrylamide hydrogel promoted by dynamic hydrogen bond. Carbohydr Polym 256:117580. https://doi.org/10.1016/j.carbpol.2020.117580

    Article  CAS  PubMed  Google Scholar 

  52. Kiti K, Suwantong O (2020) Bilayer wound dressing based on sodium alginate incorporated with curcumin-beta-cyclodextrin inclusion complex/chitosan hydrogel. Int J Biol Macromol 164:4113–4124. https://doi.org/10.1016/j.ijbiomac.2020.09.013

    Article  CAS  PubMed  Google Scholar 

  53. Li W, Wang J, Zou L, Zhu S (2008) Synthesis and characterization of potassium humate–acrylic acid–acrylamide hydrogel. J Polym Res 15:435–445. https://doi.org/10.1007/s10965-008-9189-z

    Article  CAS  Google Scholar 

  54. Chen H, Li Q, Wang M, Ji D, Tan W (2020) XPS and two-dimensional FTIR correlation analysis on the binding characteristics of humic acid onto kaolinite surface. Sci Total Environ 724:138154. https://doi.org/10.1016/j.scitotenv.2020.138154

    Article  CAS  PubMed  Google Scholar 

  55. Yu NN, Li GY, Gao YR, Jiang H, Tao Q (2016) Thermo-sensitive complex micelles from sodium alginate-graft-poly(N-isopropylacrylamide) for drug release. Int J Biol Macromol 86:296–301. https://doi.org/10.1016/j.ijbiomac.2016.01.066

    Article  CAS  PubMed  Google Scholar 

  56. Sinha V, Chakma S (2020) Synthesis and evaluation of CMC-g-AMPS/Fe/Al/AC composite hydrogel and their use in fluoride removal from aqueous solution. Environ Technol Innov 17:100620. https://doi.org/10.1016/j.eti.2020.100620

    Article  CAS  Google Scholar 

  57. Choe SR, Haldorai Y, Jang S-C et al (2018) Fabrication of alginate/humic acid/Fe-aminoclay hydrogel composed of a grafted-network for the efficient removal of strontium ions from aqueous solution. Environ Technol Innov 9:285–293. https://doi.org/10.1016/j.eti.2017.12.008

    Article  Google Scholar 

  58. Wang W, Shen M, Jiang L et al (2019) Rheological behavior, microstructure characterization and formation mechanism of Mesona blumes polysaccharide gels induced by calcium ions. Food Hydrocoll 94:136–143. https://doi.org/10.1016/j.foodhyd.2019.03.014

    Article  CAS  Google Scholar 

  59. Huang T, Tu ZC, Wang H et al (2017) Pectin and enzyme complex modified fish scales gelatin: rheological behavior, gel properties and nanostructure. Carbohydr Polym 156:294–302. https://doi.org/10.1016/j.carbpol.2016.09.040

    Article  CAS  PubMed  Google Scholar 

  60. Qu RJ, Wang Y, Li D, Wang LJ (2021) Rheological behavior of nanocellulose gels at various calcium chloride concentrations. Carbohydr Polym 274:118660. https://doi.org/10.1016/j.carbpol.2021.118660

    Article  CAS  PubMed  Google Scholar 

  61. Tang L, Wang L, Yang X et al (2021) Poly(N-isopropylacrylamide)-based smart hydrogels: design, properties and applications. Prog Mater Sci 115:100702. https://doi.org/10.1016/j.pmatsci.2020.100702

    Article  CAS  Google Scholar 

  62. Wang Y, Zhu Y, Liu Y, Mu B, Wang A (2021) Research on preparation and properties of a multifunctional superabsorbent based on semicoke and humic acid. Eur Polym J 159:110750. https://doi.org/10.1016/j.eurpolymj.2021.110750

    Article  CAS  Google Scholar 

  63. Jayaramudu T, Varaprasad K, Sadiku ER, Amalraj J (2019) Temperature-sensitive semi-IPN composite hydrogels for antibacterial applications. Colloids Surf A Physicochem Eng Asp 572:307–316. https://doi.org/10.1016/j.colsurfa.2019.04.012

    Article  CAS  Google Scholar 

  64. Zakerikhoob M, Abbasi S, Yousefi G, Mokhtari M, Noorbakhsh MS (2021) Curcumin-incorporated crosslinked sodium alginate-g-poly (N-isopropyl acrylamide) thermo-responsive hydrogel as an in-situ forming injectable dressing for wound healing: in vitro characterization and in vivo evaluation. Carbohydr Polym 271:118434. https://doi.org/10.1016/j.carbpol.2021.1184344

    Article  CAS  PubMed  Google Scholar 

  65. Cheng D, Liu Y, Yang G, Zhang A (2018) Water- and fertilizer-integrated hydrogel derived from the polymerization of acrylic acid and urea as a slow-release N fertilizer and water retention in agriculture. J Agric Food Chem 66:5762–5769. https://doi.org/10.1021/acs.jafc.8b00872

    Article  CAS  PubMed  Google Scholar 

  66. Li J, Liu Y, Liu J et al (2022) A novel synthetic slow release fertilizer with low energy production for efficient nutrient management. Sci Total Environ 831:154844. https://doi.org/10.1016/j.scitotenv.2022.154844

    Article  CAS  PubMed  Google Scholar 

  67. Wang Y, Shaghaleh H, Hamoud YA et al (2021) Synthesis of a pH-responsive nano-cellulose/sodium alginate/MOFs hydrogel and its application in the regulation of water and N-fertilizer. Int J Biol Macromol 187:262–271. https://doi.org/10.1016/j.ijbiomac.2021.07.154

    Article  CAS  PubMed  Google Scholar 

  68. Kong W, Li Q, Li X et al (2019) A biodegradable biomass-based polymeric composite for slow release and water retention. J Environ Manage 230:190–198. https://doi.org/10.1016/j.jenvman.2018.09.086

    Article  CAS  PubMed  Google Scholar 

  69. Andelkovic IB, Kabiri S, Tavakkoli E et al (2018) Graphene oxide-Fe(III) composite containing phosphate – a novel slow release fertilizer for improved agriculture management. J Clean Prod 185:97–104. https://doi.org/10.1016/j.jclepro.2018.03.050

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by Natural Science Project of Zhengzhou Science and Technology Bureau [Grant number 21ZZXTCX14]; the Innovative Funds Plan of Henan University of Technology [Grant number: 2021ZKCJ08]; the National Natural Science Foundation of China [Grant number: U1904171].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to conception and design of the study. BH, CH and YZ performed material preparation, data collection, and analysis. SY, GW and TG prepared figures. The first draft of the manuscript was written by BH, HW and JL reviewed and edited the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Hongliang Wei or Jingjing Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

All authors agreed to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 129 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, B., Wei, H., Hu, C. et al. Preparation of pH/temperature-responsive semi-IPN hydrogels based on sodium alginate and humic acid as slow-release and water-retention fertilizers. Polym. Bull. 81, 4175–4198 (2024). https://doi.org/10.1007/s00289-023-04901-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04901-7

Keywords

Navigation