Skip to main content
Log in

Fabrication of polyaniline/zinc oxide nanocomposites: synthesis, characterization and adsorption of methylene orange

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the present work, PANi/ZnO nanocomposite has been chemically synthesized by using formic acid. PANi/ZnO nanocomposites containing different weight content of ZnO nanoparticles (10, 20 and 30 wt%). ZnO nanoparticles were prepared by the co-precipitation method. Characteristics such as structural, morphological and absorption of the prepared nanocomposites were studied by XRD, FT-IR, SEM and UV–vis spectra. X-ray diffraction of zinc oxide nanoparticles confirmed formation of hexagonal wurtzite crystalline structure, also the substituted zinc oxide nanoparticles in different percentage to semi-crystalline polyaniline indicating nearly the same crystalline structure of PANi/ZnO nanocomposites. The average crystallite size of prepared samples was estimated using XRD, ranging from 11.66 to 25.26 nm, and SEM images revealed an average particle size of 19.72–15.03 nm. The Fourier transform infrared spectra (FT-IR) of ZnO nanoparticles, PANi and their composites have been analyzed in the frequency range between 400 and 4000 cm−1. The characteristic FT-IR peaks of ZnO nanoparticles show shifts to lower wave numbers in all composites. These observed effects may be due to conjugation and some chemical interactions between ZnO nanoparticles and PANI molecular chain. The results confirmed that the PANI successfully grown on surface of ZnO nanoparticles. The ZnO nanoparticles, PANI and PANi/ZnO nanocomposites were further applied to remove methylene orange dye, the effect of pH, initial dye concertation and ZnO nanoparticles dose were investigated via a batch experimental. According to the results, that the hybrid composite of PANi/ZnO increased the photo degradation of methylene orange dye molecules in aqueous solution compared with parent materials. Maximum removal efficiencies at optimum conditions were higher than 97% at pH 11, concentration of dye:10 mg/l, time equal 40 min and dose 0.1 g of 30%ZnO/70%PANi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

BOD:

Biochemical oxygen content

qe :

Adsorption capacity (mg/g)

C i :

Initial concentration (mg L1)

C f :

Final concentration (mg L1)

V :

Volume of the solution in (L)

M :

The amount of the adsorbent (g)

Ce :

Concentration of adsorbate at equilibrium state (mg L1)

qmax :

Langmuir constant relating to adsorption capacity (mg/g)

b:

Constant refers to adsorption energy (L/mg)

\({K}_{f}\) :

Constant related to the adsorption capacity of adsorbent

n:

Constant depends on adsorption intensity value

q t :

The amount of adsorbed dye at time (t) (mg/g)

K 1 :

Pseudo-first-order equilibrium rate constant (1/min)

K 2 :

Pseudo-second-order rate constant (g/mg min)

MO:

Methyl orange dye

References

  1. Cherniwchan J (2012) Economic growth, industrialization, and the environment. Res Energy Econ 34:442–467

    Article  Google Scholar 

  2. Forgacs E, Cserháti T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30:953–971

    Article  PubMed  CAS  Google Scholar 

  3. Murugesan K, Kalaichelvan P (2003) Synthetic dye decolourization by white rot fungi. NISCAIR-CSIR, India

    Google Scholar 

  4. Mittal A, Mittal J, Malviya A, Kaur D, Gupta VK (2010) Adsorption of hazardous dye crystal violet from wastewater by waste materials. J Colloid Interface Sci 343:463–473

    Article  PubMed  CAS  Google Scholar 

  5. Deshannavar UB, Ratnamala GM, Kalburgi PB, El-Harbawi M, Agarwal A, Shet M, Teli M, Bhandare P (2016) Optimization, kinetic and equilibrium studies of disperse yellow 22 dye removal from aqueous solutions using malaysian teak wood sawdust as adsorbent. Indian Chem Eng 58:12–28

    Article  CAS  Google Scholar 

  6. Sardar M, Manna M, Maharana M, Sen S (2021) Remediation of dyes from industrial wastewater using low-cost adsorbents. Green adsorbents to remove metals dyes and boron from polluted water. Springer, pp 377–403

    Chapter  Google Scholar 

  7. Gürses A, Açıkyıldız M, Güneş K, Gürses MS (2016) Classification of Dye and Pigments. In: Gürses A, Açıkyıldız M, Güneş K, Gürses MS (eds) Dyes and Pigments. Springer International Publishing, Cham, pp 31–45

    Chapter  Google Scholar 

  8. Nasar A, Mashkoor F (2019) Application of polyaniline-based adsorbents for dye removal from water and wastewater—a review. Environ Sci Pollut Res 26:5333–5356

    Article  CAS  Google Scholar 

  9. Lee J-W, Choi S-P, Thiruvenkatachari R, Shim W-G, Moon H (2006) Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes. Dyes Pigm 69:196–203

    Article  CAS  Google Scholar 

  10. Raval NP, Shah PU, Shah NK (2016) Adsorptive amputation of hazardous azo dye Congo red from wastewater: a critical review. Environ Sci Pollut Res 23:14810–14853

    Article  CAS  Google Scholar 

  11. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Coll Interface Sci 209:172–184

    Article  CAS  Google Scholar 

  12. Saravanan R, Sacari E, Gracia F, Khan MM, Mosquera E, Gupta VK (2016) Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J Mol Liq 221:1029–1033

    Article  CAS  Google Scholar 

  13. Saini P (2015) Conjugated polymer-based blends, copolymers, and composites: synthesis, properties, and applications. Wiley, pp 3–118

    Google Scholar 

  14. Monsef Khoshhesab Z, Souhani S (2018) Adsorptive removal of reactive dyes from aqueous solutions using zinc oxide nanoparticles. J Chin Chem Soc 65:1482–1490

    Article  CAS  Google Scholar 

  15. Alam M, Alandis NM, Ansari AA, Shaik MR (2013) Optical and electrical studies of polyaniline/ZnO nanocomposite. J Nanomater 2013:157810

    Article  Google Scholar 

  16. Sharma BK, Gupta AK, Khare N, Dhawan SK, Gupta HC (2009) Synthesis and characterization of polyaniline–ZnO composite and its dielectric behavior. Synth Met 159:391–395

    Article  CAS  Google Scholar 

  17. Ramakrishnan S, Rajakarthihan S (2020) Low-dose gamma irradiation effect on structural and optical properties of PANI–ZnO composite thin films. Appl Radiat Isot 160:109104

    Article  PubMed  CAS  Google Scholar 

  18. Ahmed F, Kumar S, Arshi N, Anwar MS, Su-Yeon L, Kil G-S, Park D-W, Koo BH, Lee CG (2011) Preparation and characterizations of polyaniline (PANI)/ZnO nanocomposites film using solution casting method. Thin Solid Films 519:8375–8378

    Article  CAS  Google Scholar 

  19. Olad A, Asadi N, Mohammadi Aref S, Nosrati R (2018) The use of adsorption method to preparation of polyaniline/ZnO nanocomposite varistor. J Mater Sci Mater Electron 29:9692–9699

    Article  CAS  Google Scholar 

  20. Mohsen RM, Morsi SMM, Selim MM, Ghoneim AM, El-Sherif HM (2019) Electrical, thermal, morphological, and antibacterial studies of synthesized polyaniline/zinc oxide nanocomposites. Polym Bull 76:1–21

    Article  CAS  Google Scholar 

  21. Ma HC, Zhang Y, Fu YH, Yu CL, Song Y, Ma C, Dong XL (2012) Preparation of polyaniline–ZnO Photocatalyst and its photocatalytic property. Adv Mater Res 356–360:519–523

    Google Scholar 

  22. Lin Y, Wang J, Yang H, Wang L (2017) In situ preparation of PANI/ZnO/CoFe2O4 composite with enhanced microwave absorption performance. J Mater Sci Mater Electron 28:17968–17975

    Article  CAS  Google Scholar 

  23. Gilja V, Vrban I, Mandić V, Žic M, Hrnjak-Murgić Z (2018) Preparation of a PANI/ZnO composite for efficient photocatalytic degradation of acid blue. Polymers 10:940

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pandimurugan R, Thambidurai S (2016) Synthesis of seaweed-ZnO-PANI hybrid composite for adsorption of methylene blue dye. J Environ Chem Eng 4:1332–1347

    Article  CAS  Google Scholar 

  25. Gabal MA, Al-Juaid AA, El-Rashed S, Hussein MA, Al Angari YM, Saeed A (2019) Structural, thermal, magnetic and electrical properties of polyaniline/CoFe2O4 nano-composites with special reference to the dye removal capability. J Inorg Organomet Polym Mater 29:2197–2213

    Article  CAS  Google Scholar 

  26. Alardhi SM, Alrubaye JM, Albayati TM (2020) Adsorption of methyl green dye onto MCM-41: equilibrium, kinetics and thermodynamic studies. Desalin Water Treat 179:323–331

    Article  CAS  Google Scholar 

  27. Salman AD, Juzsakova T, Jalhoom MG, Le Phuoc C, Mohsen S, Adnan Abdullah T, Zsirka B, Cretescu I, Domokos E, Stan CD (2020) Novel hybrid nanoparticles: Synthesis, functionalization, characterization, and their application in the uptake of scandium (III) ions from aqueous media. Materials 13:5727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Al-Jadir T, Alardhi SM, Al-Sheikh F, Jaber AA, Kadhim WA, Rahim MHA (2022) Modeling of lead (II) ion adsorption on multiwall carbon nanotubes using artificial neural network and Monte Carlo technique. Chem Eng Commun. https://doi.org/10.1080/00986445.2022.2129622

    Article  Google Scholar 

  29. Mrad M, Chouchene B, Chaabane TB (2018) Effects of zinc precursor, basicity and temperature on the aqueous synthesis of ZnO nanocrystals, South African. J Chem 71:103–110

    CAS  Google Scholar 

  30. VK Anand, S Sood, A Sharma (2010) Characterization of ZnO thin film deposited by sol–gel process. In: AIP conference proceedings, American Institute of Physics. pp 399–401

  31. Turkten N, Karatas Y, Bekbolet M (2021) Preparation of PANI modified ZnO composites via different methods: structural, morphological and photocatalytic properties. Water 13:1025

    Article  CAS  Google Scholar 

  32. Abdalsalam AH, Ati AA, Abduljabbar A, Hussein TA (2019) Structural, optical, electrical and magnetic studies of pani/ferrite nanocomposites synthesized by PLD technique. J Inorg Organomet Polym Mater 29:1084–1093

    Article  CAS  Google Scholar 

  33. Salih S, Algabban A, Abdalsalam A (2017) Preparation and characterization of PMMA-HDPE and HDPE-PMMA binary polymer blends. Eng Technol J 35:311–317

    Article  Google Scholar 

  34. Ati MA, Khudhair H, Dabagh S, Rosnan R, Ati AA (2014) Synthesis and characterization of cobalt doped nickel-ferrites nanocrystalline by co-precipitation method. Int J Sci Eng Res 9:927–930

    Google Scholar 

  35. Ati AA, Abdalsalam AH, Hasan AS (2021) Thermal, microstructural and magnetic properties of manganese substitution cobalt ferrite prepared via co-precipitation method. J Mater Sci: Mater Electron 32:3019–3037

    CAS  Google Scholar 

  36. Langford J (1975) X-ray diffraction procedures for polycrystalline and amorphous materials by HP Klug and LE Alexander. J Appl Crystallogr 8:573–574

    Article  Google Scholar 

  37. Alam M, Alandis NM, Ansari AA, Shaik MR (2013) Optical and electrical studies of polyaniline/ZnO nanocomposite. J Nanomater 2013:1–5

    Google Scholar 

  38. Ati AA (2018) Fast synthesis, structural, morphology with enhanced magnetic properties of cobalt doped nickel ferrite nanoscale. J Mater Sci: Mater Electron 29:12010–12021

    CAS  Google Scholar 

  39. Kayani ZN, Iqbal M, Riaz S, Zia R, Naseem S (2016) Fabrication and properties of zinc oxide thin film prepared by sol–gel dip coating method. Mater Sci-Pol 33:515–520

    Article  Google Scholar 

  40. Shah SS, Sharma T, Dar BA, Bamezai RK (2021) Adsorptive removal of methyl orange dye from aqueous solution using populous leaves: Insights from kinetics, thermodynamics and computational studies. Environ Chem Ecotoxicol 3:172–181

    Article  CAS  Google Scholar 

  41. Rápó E, Tonk S (2021) Factors affecting synthetic dye adsorption; desorption studies: a review of results from the last 5 years (2017–2021). Molecules (Basel, Switzerland) 26:5419

    Article  PubMed  Google Scholar 

  42. Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji Z (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967

    Article  PubMed  CAS  Google Scholar 

  43. Lei C, Pi M, Jiang C, Cheng B, Yu J (2017) Synthesis of hierarchical porous zinc oxide (ZnO) microspheres with highly efficient adsorption of Congo red. J Colloid Interface Sci 490:242–251

    Article  PubMed  CAS  Google Scholar 

  44. Mahmoud ME, Abou Kana MTH, Hendy AA (2015) Synthesis and implementation of nano-chitosan and its acetophenone derivative for enhanced removal of metals. Int J Biol Macromol 81:672–680

    Article  PubMed  CAS  Google Scholar 

  45. Pooresmaeil M, Mansoori Y, Mirzaeinejad M, Khodayari A (2018) Efficient removal of methylene blue by novel magnetic hydrogel nanocomposites of poly(acrylic acid). Adv Polym Technol 37:262–274

    Article  CAS  Google Scholar 

  46. Huang R, Liu Q, Huo J, Yang B (2017) Adsorption of methyl orange onto protonated cross-linked chitosan. Arab J Chem 10:24–32

    Article  CAS  Google Scholar 

  47. Jain M, Garg VK, Kadirvelu K (2010) Adsorption of hexavalent chromium from aqueous medium onto carbonaceous adsorbents prepared from waste biomass. J Environ Manage 91:949–957

    Article  PubMed  CAS  Google Scholar 

  48. Boeva ZA, Sergeyev VG (2014) Polyaniline: synthesis, properties, and application. Polym Sci Ser C 56:144–153

    Article  CAS  Google Scholar 

  49. Jiang Y, Liu Z, Zeng G, Liu Y, Shao B, Li Z, Liu Y, Zhang W, He Q (2018) Polyaniline-based adsorbents for removal of hexavalent chromium from aqueous solution: a mini review. Environ Sci Pollut Res 25:6158–6174

    Article  CAS  Google Scholar 

  50. Mohammadi Nodeh MK, Gabris MA, Rashidi Nodeh H, Esmaeili Bidhendi M (2018) Efficient removal of arsenic (III) from aqueous media using magnetic polyaniline-doped strontium–titanium nanocomposite. Environ Sci Pollut Res 25:16864–16874

    Article  CAS  Google Scholar 

  51. Mahmoud ME, Saad EA, El-Khatib AM, Soliman MA, Allam EA, Fekry NA (2018) Green solid synthesis of polyaniline-silver oxide nanocomposite for the adsorptive removal of ionic divalent species of Zn/Co and their radioactive isotopes 65Zn/60Co. Environ Sci Pollut Res 25:22120–22135

    Article  CAS  Google Scholar 

  52. Yang G, Wu L, Xian Q, Shen F, Wu J, Zhang Y (2016) Removal of congo red and methylene blue from aqueous solutions by vermicompost-derived biochars. PLoS ONE 11:e0154562

    Article  PubMed  PubMed Central  Google Scholar 

  53. Deng H, Lu J, Li G, Zhang G, Wang X (2011) Adsorption of methylene blue on adsorbent materials produced from cotton stalk. Chem Eng J 172:326–334

    Article  CAS  Google Scholar 

  54. Hanifa F, Ehsana S, Zafara S, Akhtara M, Imran M, Manzoorf S (2020) Adsorptive removal of methyl orange and acid blue-2445 from binary system by anion exchange membrane BI: non-linear and linear form of isotherms. Desalin Water Treat 194:290–301

    Article  Google Scholar 

  55. Ahmad A, Rafatullah M, Sulaiman O, Ibrahim MH, Hashim R (2009) Scavenging behaviour of meranti sawdust in the removal of methylene blue from aqueous solution. J Hazard Mater 170:357–365

    Article  PubMed  CAS  Google Scholar 

  56. Banerjee S, Chattopadhyaya MC (2017) Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arab J Chem 10:S1629–S1638

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank the Nanotechnology and Advanced Materials Center of University of Technology-Iraq and Institute for Fundamental Science Studies and physics department of Universiti Teknologi Malaysia (UTM) for facilities supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alyaa H. Abdalsalam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alardhi, S.M., Abdalsalam, A.H., Ati, A.A. et al. Fabrication of polyaniline/zinc oxide nanocomposites: synthesis, characterization and adsorption of methylene orange. Polym. Bull. 81, 1131–1157 (2024). https://doi.org/10.1007/s00289-023-04753-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04753-1

Keywords

Navigation