Skip to main content

Advertisement

Log in

Design, characterization and evaluation of gelatin/carboxymethyl cellulose hydrogels for effective delivery of ciprofloxacin

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The present work is to synthesize and characterize pH-sensitive gelatin/carboxymethyl cellulose (gelatin/CMC) hydrogels crosslinked with glutaraldehyde (GA). The effect of polymer ratio and crosslinking on dynamic swelling, equilibrium swelling and in vitro release pattern of model drug ciprofloxacin hydrochloride was investigated. Swelling and release studies were conducted in phosphate buffer solutions of various pH ranging from 1.2, 5.5 and 7.4. Hydrogels were characterized by FTIR (Fourier transform infrared spectroscopy), XRD (X-ray diffraction), SEM scanning electron microscopy and DSC (differential scanning calorimetry). The drug release data were fitted to various models to determine best fit release model. Drug-loaded hydrogels were further subjected to antioxidant, antibacterial and antifungal assays to assess the pharmacological profile of encapsulated drug, whereas cytotoxicity of prepared hydrogel was also evaluated. The results showed that maximum swelling and consequent highest release of drug occurred at pH 1.2 where gelatin was mainly responsible for swelling and release characteristics. The results of FTIR and XRD proved the crosslinking of polymers and compatibility of drug with polymers, whereas DSC confirmed the molecular dispersion of drug in the polymeric network. Release pattern of drug was zero order and the release of drug occurred through non-Fickian diffusion. The results obtained from various biological assays were sufficient to verify the hydrogels as potential drug carrier. Overall the results demonstrated the prepared hydrogels as a favourable drug carrier to achieve controlled drug release for different antimicrobial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zellweger RM, Carrique-Mas J, Limmathurotsakul D, Day NP, Thwaites GE, Baker S (2017) Southeast Asia antimicrobial resistance network. A current perspective on antimicrobial resistance in Southeast Asia. J Antimicrob Chemother 72(11):2963–2972

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Collignon PJ, McEwen SA (2019) One health—its importance in helping to better control antimicrobial resistance. Tropical Med Infect Disease 4(1):22

    Google Scholar 

  3. Van Boeckel TP, Pires J, Silvester R, Zhao C, Song J, Criscuolo NG, Gilbert M, Bonhoeffer S, Laxminarayan R (2019) Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science 365(6459):eaaw1944. https://doi.org/10.1126/science.aaw1944

    Article  CAS  PubMed  Google Scholar 

  4. Iqbal H, Khan BA, Khan ZU, Razzaq A, Khan NU, Menaa B, Menaa F (2020) Fabrication, physical characterizations and in vitro antibacterial activity of cefadroxil-loaded chitosan/poly (vinyl alcohol) nanofibers against Staphylococcus aureus clinical isolates. Int J Biol Macromol 144:921–931

    CAS  PubMed  Google Scholar 

  5. Sharpe LA, Daily AM, Horava SD, Peppas NA (2014) Therapeutic applications of hydrogels in oral drug delivery. Expert Opin Drug Deliv 11(6):901–915

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang K, Han Q, Chen B, Zheng Y, Zhang K, Li Q, Wang J (2018) Antimicrobial hydrogels: promising materials for medical application. Int J Nanomed 13:2217

    CAS  Google Scholar 

  7. Lima 2019, Studies on gelatin-based hydrogels with co-immobilized finibax and heparin for regenerative medicine. Kyushu University

  8. Xu W, Dong S, Han Y, Li S, Liu Y (2018) Hydrogels as antibacterial biomaterials. Curr Pharm Des 24(8):843–854

    CAS  PubMed  Google Scholar 

  9. Yu Y, Xu S, Li S, Pan H (2021) Genipin-cross-linked hydrogels based on biomaterials for drug delivery: a review. Biomater Sci 9(5):1583–1597

    CAS  PubMed  Google Scholar 

  10. Sung YK, Kim SW (2020) Recent advances in polymeric drug delivery systems. Biomater Res 24(1):1–2

    Google Scholar 

  11. Birajdar MS, Joo H, Koh WG, Park H (2021) Natural bio-based monomers for biomedical applications: a review. Biomater Res 25(1):1–4

    Google Scholar 

  12. Sun B, Li C, Mao Y, Qiao Z, Jia R, Huang T, Xu D, Yang W (2021) Distinctive characteristics of collagen and gelatin extracted from Dosidicus gigas skin. Int J Food Sci Technol 56(7):3443–3454

    CAS  Google Scholar 

  13. Salvatore L, Gallo N, Natali ML, Terzi A, Sannino A, Madaghiele M (2021) Mimicking the hierarchical organization of natural collagen: toward the development of ideal scaffolding material for tissue regeneration. Front in Bioeng Biotechnol 9:644–595

    Google Scholar 

  14. Mad-Ali S, Benjakul S, Prodpran T, Maqsood S (2017) Characteristics and gelling properties of gelatin from goat skin as affected by drying methods. J Food Sci Technol 54(6):1646–1654

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Dash R, Foston M, Ragauskas AJ (2013) Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers. Carbohyd Polym 91(2):638–645

    CAS  Google Scholar 

  16. Bello AB, Kim D, Kim D, Park H, Lee SH (2020) Engineering and functionalization of gelatin biomaterials: from cell culture to medical applications. Tissue Eng Part B Rev 26(2):164–180

    CAS  PubMed  Google Scholar 

  17. Candido TM. Segurança e eficácia antioxidante pré-clínica e clínica de etossomas contendo rutina de orientação de uso cosmético (Doctoral dissertation, Universidade de São Paulo).

  18. Rodríguez-Rodríguez R, Espinosa-Andrews H, Velasquillo-Martínez C, García-Carvajal ZY (2020) Composite hydrogels based on gelatin, chitosan and polyvinyl alcohol to biomedical applications: a review. Int J Polym Mater Polym Biomater 69(1):1–20

    Google Scholar 

  19. Skopinska-Wisniewska J, Tuszynska M, Olewnik-Kruszkowska E (2021) Comparative study of gelatin hydrogels modified by various cross-linking agents. Materials 14(2):396

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sethi S, Kaith BS, Kumar V (2019) Fabrication and characterization of microwave assisted carboxymethyl cellulose-gelatin silver nanoparticles imbibed hydrogel: Its evaluation as dye degradation. React Funct Polym 142:134–146

    CAS  Google Scholar 

  21. Pourjavadi A, Barzegar S, Mahdavinia GR (2006) MBA-crosslinked Na-Alg/CMC as a smart full-polysaccharide superabsorbent hydrogels. Carbohyd Polym 66(3):386–395

    CAS  Google Scholar 

  22. Malik NS, Ahmad M, Minhas MU, Murtaza G, Khalid Q (2017) Polysaccharide hydrogels for controlled release of acyclovir: development, characterization and in vitro evaluation studies. Polym Bull 74(10):4311–4328

    CAS  Google Scholar 

  23. Malik NS, Ahmad M, Minhas MU, Tulain R, Barkat K, Khalid I, Khalid Q (2020) Chitosan/xanthan gum based hydrogels as potential carrier for an antiviral drug: fabrication, characterization, and safety evaluation. Front Chem 8:50

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ghorpade VS, Yadav AV, Dias RJ, Mali KK, Pargaonkar SS, Shinde PV, Dhane NS (2018) Citric acid crosslinked carboxymethylcellulose-poly (ethylene glycol) hydrogel films for delivery of poorly soluble drugs. Int J Biol Macromol 118:783–791

    CAS  PubMed  Google Scholar 

  25. Kim DW, Shchipunov Y, Kim GH, Shin I, Ha CS (2020) Effect of graphene oxide content on the tensile properties and swelling ratio of chitosan/xanthan gum/graphene oxide hydrogel films. Mol Cryst Liq Cryst 706(1):72–78

    CAS  Google Scholar 

  26. Saeed Abdelmonem Elqiey A (2020) Evaluation of antibacterial activity of chitosan-coated anisotropic silver Nanoparticles on different bacterial strains.

  27. Sahraro M, Barikani M, Daemi H (2018) Mechanical reinforcement of gellan gum polyelectrolyte hydrogels by cationic polyurethane soft nanoparticles. Carbohyd Polym 187:102–109

    CAS  Google Scholar 

  28. Tiwari R, Krishnamoorthi S, Kumar K (2019) Synthesis of cross-linker devoid novel hydrogels: swelling behaviour and controlled urea release studies. J Environ Chem Eng 7(4):103162

    Google Scholar 

  29. Kanmaz N, Saloglu D, Hizal J (2019) Humic acid embedded chitosan/poly (vinyl alcohol) pH-sensitive hydrogel: Synthesis, characterization, swelling kinetic and diffusion coefficient. Chem Eng Commun 206(9):1168–1180

    CAS  Google Scholar 

  30. Sami AJ, Khalid M, Jamil T, Aftab S, Mangat SA, Shakoori AR, Iqbal S (2018) Formulation of novel chitosan guargum based hydrogels for sustained drug release of paracetamol. Int J Biol Macromol 108:324–332

    CAS  PubMed  Google Scholar 

  31. Peppas NA (ed) (1986) Hydrogels in medicine and pharmacy. CRC Press, Boca Raton, FL

    Google Scholar 

  32. Kumari PK, Sharmila M, Rao YS (2020) Super porous hydrogels: a review. J Pharm Res Int 32:153–165

    Google Scholar 

  33. Akhlaq M, Idrees N, Nawaz A, Jalil A, Zafar N, Adeel M, Ullah I, Mukhtiar M, Afridi HH (2020) HPMC-co-acrylic acid dexibuprofen once-daily oral hydrogels. J Macromolec Sci, Part A 57(9):663–674

    CAS  Google Scholar 

  34. Kour P, Afzal S, Gani A, Zargar MI, Tak UN, Rashid S, Dar AA (2022) Effect of nanoemulsion-loaded hybrid biopolymeric hydrogel beads on the release kinetics, antioxidant potential and antibacterial activity of encapsulated curcumin. Food Chem 376:131925

    CAS  Google Scholar 

  35. Wang H, Gong X, Guo X, Liu C, Fan YY, Zhang J, Niu B, Li W (2019) Characterization, release, and antioxidant activity of curcumin-loaded sodium alginate/ZnO hydrogel beads. Int J Biol Macromol 121:1118–1125

    CAS  PubMed  Google Scholar 

  36. Javanbakht S, Shaabani A (2019) Carboxymethyl cellulose-based oral delivery systems. Int J Biol Macromol 133:21–29

    CAS  PubMed  Google Scholar 

  37. Tong T, Deng S, Zhang X, Fang L, Liang J, Xiao S (2022) Inhibitory effect and mechanism of gelatin stabilized ferrous sulfide nanoparticles on porcine reproductive and respiratory syndrome virus. J Nanobiotechnology 20(1):1–3

    Google Scholar 

  38. Goudoulas TB, Vanderhaeghen S, Germann N (2022) Micro-dispersed essential oils loaded gelatin hydrogels with antibacterial activity. LWT 154:112797

    CAS  Google Scholar 

  39. Rahman M, Hasan M, Nitai AS, Nam S, Karmakar AK, Ahsan M, Shiddiky MJ, Ahmed MB (2021) Recent developments of carboxymethyl cellulose. Polymers 13(8):1345

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lordello VB, Meneguin AB, de Annunzio SR, Taranto MP, Chorilli M, Fontana CR, Cavallini DC (2021) Orodispersible film loaded with enterococcus faecium CRL183 presents anti-candida albicans biofilm activity in vitro. Pharmaceutics 13(7):998

    PubMed  PubMed Central  Google Scholar 

  41. Babaladimath G, Badalamoole V (2019) Silver nanoparticles embedded pectin-based hydrogel: a novel adsorbent material for separation of cationic dyes. Polym Bull 76(8):4215–4236

    CAS  Google Scholar 

  42. Nia SB, Pooresmaeil M, Namazi H (2020) Carboxymethylcellulose/layered double hydroxides bio-nanocomposite hydrogel: a controlled amoxicillin nanocarrier for colonic bacterial infections treatment. Int J Biol Macromol 155:1401–1409

    Google Scholar 

  43. Qi X, Yuan Y, Zhang J, Bulte JW, Dong W (2018) Oral administration of salecan-based hydrogels for controlled insulin delivery. J Agric Food Chem 66(40):10479–10489

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Shariatinia Z (2018) Carboxymethyl chitosan: properties and biomedical applications. Int J Biol Macromol 120:1406–1419

    CAS  PubMed  Google Scholar 

  45. Khan S, Anwar N (2021) Gelatin/carboxymethyl cellulose based stimuli-responsive hydrogels for controlled delivery of 5-fluorouracil, development, in vitro characterization, in vivo safety and bioavailability evaluation. Carbohyd Polym 257:117617

    CAS  Google Scholar 

  46. Esteghlal S, Niakousari M, Hosseini SM (2018) Physical and mechanical properties of gelatin-CMC composite films under the influence of electrostatic interactions. Int J Biol Macromol 114:1–9

    CAS  PubMed  Google Scholar 

  47. Ghorpade VS, Dias RJ, Mali KK, Mulla SI (2019) Citric acid crosslinked carboxymethylcellulose-polyvinyl alcohol hydrogel films for extended release of water soluble basic drugs. J Drug Deliv Sci Technol 52:421–430

    CAS  Google Scholar 

  48. Zia MA, Sohail M, Minhas MU, Sarfraz RM, Khan S, de Matas M, Hussain Z, Abbasi M, Shah SA, Kousar M, Ahmad N (2020) HEMA based pH-sensitive semi IPN microgels for oral delivery; a rationale approach for ketoprofen. Drug Dev Ind Pharm 46(2):272–282

    CAS  PubMed  Google Scholar 

  49. Malik NS, Ahmad M, Minhas MU (2017) Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir. PLoS ONE 12(2):e0172727

    PubMed  PubMed Central  Google Scholar 

  50. Ubaid M, Murtaza G (2018) Fabrication and characterization of genipin cross-linked chitosan/gelatin hydrogel for pH-sensitive, oral delivery of metformin with an application of response surface methodology. Int J Biol Macromol 114:1174–1185

    CAS  PubMed  Google Scholar 

  51. Rakhshaei R, Namazi H, Hamishehkar H, Rahimi M (2020) Graphene quantum dot cross-linked carboxymethyl cellulose nanocomposite hydrogel for pH-sensitive oral anticancer drug delivery with potential bioimaging properties. Int J Biol Macromol 150:1121–1129

    CAS  PubMed  Google Scholar 

  52. Sarrigiannidis SO, Rey JM, Dobre O, González-García C, Dalby MJ, Salmeron-Sanchez M (2021) A tough act to follow: collagen hydrogel modifications to improve mechanical and growth factor loading capabilities. Materials Today Bio 10:100098

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Daud H, Ghani A, Iqbal DN, Ahmad N, Nazir S, Muhammad MJ, Hussain EA, Nazir A, Iqbal M (2021) Preparation and characterization of guar gum based biopolymeric hydrogels for controlled release of antihypertensive drug. Arab J Chem 14(5):103111

    CAS  Google Scholar 

  54. Manan FA, Yusof NA, Abdullah J, Mohammad F, Nurdin A, Yazan LS, Khiste SK, Al-Lohedan HA (2021) Drug release profiles of mitomycin c encapsulated quantum dots–chitosan nanocarrier system for the possible treatment of non-muscle invasive bladder cancer. Pharmaceutics 13(9):1379

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Rai M, Ingle AP, Pandit R, Paralikar P, Anasane N, Santos CA (2020) Curcumin and curcumin-loaded nanoparticles: antipathogenic and antiparasitic activities. Expert Rev Anti Infect Ther 18(4):367–379

    CAS  PubMed  Google Scholar 

  56. Eshkol-Yogev I, Kaufman A, Haddad M, Zilberman M (2022) Cell viability of novel composite hydrogels loaded with hydroxyapatite for oral and maxillofacial bone regeneration. Odontology 110(2):296–304

    CAS  PubMed  Google Scholar 

  57. Ture H (2019) Characterization of hydroxyapatite-containing alginate–gelatin composite films as a potential wound dressing. Int J Biol Macromol 123:878–888

    CAS  PubMed  Google Scholar 

  58. Marchesan S, Qu Y, Waddington LJ, Easton CD, Glattauer V, Lithgow TJ, McLean KM, Forsythe JS, Hartley PG (2013) Self-assembly of ciprofloxacin and a tripeptide into an antimicrobial nanostructured hydrogel. Biomaterials 34(14):3678–87

    CAS  PubMed  Google Scholar 

  59. Sharma P, Chaudhary M, Khanna G, Rishi P, Kaur IP (2021) Envisaging antifungal potential of histatin 5: a physiological salivary peptide. J Fungi 7(12):1070

    CAS  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Shamshad Malik.

Ethics declarations

Conflict of Interest

The author(s) declare(s) that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahar, F., Riaz, A., Malik, N.S. et al. Design, characterization and evaluation of gelatin/carboxymethyl cellulose hydrogels for effective delivery of ciprofloxacin. Polym. Bull. 80, 12271–12299 (2023). https://doi.org/10.1007/s00289-022-04657-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04657-6

Keywords

Navigation