Skip to main content
Log in

Preparation and properties of homogeneous oxidized sodium alginate/silica/polyacrylamide–gelatin composite hydrogel based on interpenetrating network technology

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

To address the functional defect of alginate hydrogel in tissue engineering applications, we adopted the interpenetrating polymer network technology as well as the incorporation of SiO2 nanoparticles and the surface coverage of gelatin to fabricate homogeneous oxidized sodium alginate/silica/polyacrylamide–gelatin (OSA/SiO2/PAM-GT) composite hydrogels, using hydroxyapatite/D-glucono-δ-lactone (HAP/GDL) complex as the gelling system. Specially, the effect of SiO2 nanoparticles on the microstructure, mechanical properties, in vitro swelling, biodegradability, biomineralization and biocompatibility of the composite hydrogels was investigated. The resultant OSA/SiO2/PAM-GT composite hydrogels exhibited relatively regular 3D morphology with well-developed pore structure with HAP/GDL as the cross-linking agents. The incorporation of SiO2 nanoparticles could effectively regulate the pore structure, mechanical properties, swelling ratio, in vitro biodegradability and biomineralization of OSA/SiO2/PAM-GT composite hydrogels. Meanwhile, the OSA/SiO2/PAM-GT composite hydrogels could also support the adhesion, proliferation and differentiation of MG-63 cells, which could be applied to the tissue engineering field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. Khan F, Ahmad SR (2013) Polysaccharides and their derivatives for versatile tissue engineering application. Macromol Biosci 13(4):395–421

    CAS  PubMed  Google Scholar 

  2. Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281

    CAS  PubMed  Google Scholar 

  3. Yan HQ, Chen XQ, Li JC, Feng YH, Shi ZF, Wang XH, Lin Q (2016) Synthesis of alginate derivative via the Ugi reaction and itscharacterization. Carbohydr Polym 136:757–763

    CAS  PubMed  Google Scholar 

  4. Bidarra SJ, Barrias CC, Granja PL (2014) Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater 10:1646–1662

    CAS  PubMed  Google Scholar 

  5. Farokhi M, Shariatzadeh FJ, Solouk A, Mirzadeh H (2020) Alginate based scaffolds for cartilage tissue engineering: a review. Int J Polym Mater 69:230–247

    CAS  Google Scholar 

  6. Zheng A, Cao L, Liu Y, Wu J, Zeng D, Hu L, Zhang X, Jiang X (2018) Biocompatible silk/calcium silicate/sodium alginate composite scaffolds for bone tissue engineering. Carbohydr Polym 199:244–255

    CAS  PubMed  Google Scholar 

  7. Wu S, Liu X, Yeung KWK, Liu C, Yang X (2014) Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R 80:1–36

    Google Scholar 

  8. Turco G, Marsich E, Bellomo F, Semeraro S, Donati I, Brun F, Grandolfo M, Accardo A, Paoletti S (2009) Alginate/hydroxyapatite biocomposite for bone ingrowth: a trabecular structure with high and isotropic connectivity. Biomacromol 10(6):1575–1583

    CAS  Google Scholar 

  9. Ionita M, Pandele MA, Iovu H (2013) Sodium alginate/graphene oxide composite films with enhanced thermal and mechanical properties. Carbohydr Polym 94:339–344

    CAS  PubMed  Google Scholar 

  10. Hernández-González AC, Téllez-Jurado L, Rodríguez-Lorenzo LM (2020) Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: a review. Carbohydr Polym 229:115514

    PubMed  Google Scholar 

  11. Li Q, Liu CG, Huang ZH, Xue FF (2011) Preparation and characterization of nanoparticles based on hydrophobic alginate derivative as carriers for sustained release of vitamin D3. J Agric Food Chem 59:1962–1967

    CAS  PubMed  Google Scholar 

  12. Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98:1585–1598

    CAS  PubMed  Google Scholar 

  13. Alizadeh N, Celestine AN, Auad ML, Agrawal V (2021) Mechanical characterization and modeling stress relaxation behavior of acrylic–polyurethane-based graft-interpenetrating polymer networks. Polym Eng Sci 61:1299–1309

    CAS  Google Scholar 

  14. Naseri N, Deepa B, Mathew AP, Oksman K, Girandon L (2016) Nanocellulose-based interpenetrating polymer network (IPN) hydrogels for cartilage applications. Biomacromol 17:3714–3723

    CAS  Google Scholar 

  15. Darnell M, Sun J, Mehta M, Johnson C, Arany P, Suo Z, Mooney D (2013) Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials 34:8042–8048

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun J, Zhao X, Illeperuma W, Chaudhuri O, Oh KH, Mooney D, Vlassak JJ, Suo Z (2012) Highly stretchable and tough hydrogels. Nature 489:133–136

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fitzgerald MM, Bootsma K, Berberich JA, Sparks JL (2015) Tunable stress relaxation behavior of an alginate-polyacrylamide hydrogel: comparison with muscle tissue. Biomacromol 16:1497–1505

    CAS  Google Scholar 

  18. Chen Y, Zhou Y, Liu W, Pi H, Zeng G (2019) POSS hybrid robust biomass IPN hydrogels with temperature responsiveness. Polymers 11(3):524

    PubMed  PubMed Central  Google Scholar 

  19. Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI (2012) ChemInform abstract: mesoporous silica nanoparticles in biomedical applications. ChemSoc Rev 41(7):2590–2605

    CAS  Google Scholar 

  20. Gribova V, Auzely-Velty R, Picart C (2012) Polyelectrolyte multilayer assemblies on materials surfaces: from cell adhesion to tissue engineering. Chem Mater 24:854–869

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee H, Hwang H, Kim Y, Jeon H, Kim GH (2014) Physical and bioactive properties of multi-layered PCL/silica composite scaffolds for bone tissue regeneration. Chem Eng J 250:399–408

    CAS  Google Scholar 

  22. Ha SW, Viggeswarapu M, Habib MM, BeckJr GR (2018) Bioactive effects of silica nanoparticles on bone cells are size, surface, and composition dependent. Acta Biomater 82:184–196

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Beck GR, Ha SW, Camalier CE, Yamaguchi M, Li Y, Lee JK, Weitzmann MN (2012) Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo. Nanomed-Nanotechnol 8(6):793–803

    CAS  Google Scholar 

  24. Weitzmann MN, Ha SW, Vikulina T, Roser-Pages S, Lee JK, Beck GR (2015) Bioactive silica nanoparticles reverse age-associated bone loss in mice. Nanomed-Nanotechnol 11(4):959–967

    CAS  Google Scholar 

  25. Pattanashetti NA, Viana T, Alves N, Mitchell GR (2020) Development of novel 3D scaffolds using BioExtruder by varying the content of hydroxyapatite and silica in PCL matrix for bone tissue engineering. J Polym Res 27(4):1–13

    Google Scholar 

  26. Lu L, Zhang P, Cao Y, Lin Q, Pang SJ (2009) Study on partially oxidized sodium alginate with potassium permanganate as the oxidant. J Appl Polym Sci 113(6):3585–3589

    CAS  Google Scholar 

  27. Mao S, Zhang T, Sun W, Ren X (2012) The depolymerization of sodium alginate by oxidative degradation. Pharm Dev Technol 17(6):763–769

    CAS  PubMed  Google Scholar 

  28. Yue W, Zhang HH, Yang ZN, Xie Y (2021) Preparation of low-molecular-weight sodium alginate by ozonation. Carbohydr Polym 251:117104

    CAS  PubMed  Google Scholar 

  29. Falkeborg M, Cheong LZ, Gianfico C, Sztukiel KM, Kristensen K, Glasius M, Xu X, Guo Z (2014) Alginate oligosaccharides: enzymatic preparation and antioxidant property evaluation. Food Chem 164:185–194

    CAS  PubMed  Google Scholar 

  30. Gomez CG, Rinaudo M, Villar MA (2007) Oxidation of sodium alginate and characterization of the oxidized derivatives. Carbohydr Polym 67:296–304

    CAS  Google Scholar 

  31. Tchobanian A, Oosterwyck HV, Fardim P (2019) Polysaccharides for tissue engineering: current landscape and future prospects. Carbohydr Polym 205:601–625

    CAS  PubMed  Google Scholar 

  32. Su K, Wang C (2015) Recent advances in the use of gelatin in biomedical research. Biotechnol Lett 37:2139–2145

    CAS  PubMed  Google Scholar 

  33. Gungor M, Sagirli MN, Calisir MD, Selcuk S, Kilic A (2021) Developing centrifugal spun thermally cross-linked gelatin based fibrous biomats for antibacterial wound dressing applications. Polym Eng Sci 61:2311–2322

    CAS  Google Scholar 

  34. Bernstein-Levi O, Ochbaum G, Bitton R (2016) The effect of covalently linked RGD peptide on the conformation of polysaccharides in aqueous solutions. Colloid Surf B 137:214–220

    CAS  Google Scholar 

  35. Chen X, Yan H, Bao C, Zhu Q, Liu Z, Wen Y, Li Z, Zhang T, Lin Q (2022) Fabrication and evaluation of homogeneous alginate/polyacrylamide–chitosan–gelatin composite hydrogel scaffolds based on the interpenetrating networks for tissue engineering. Polym Eng Sci 62(1):116–128

    CAS  Google Scholar 

  36. Wang H, Chen X, Wen Y, Li D, Sun X, Liu Z, Yan H, Lin Q (2022) A study on the correlation between the oxidation degree of oxidized sodium alginate on its degradability and gelation. Polymers 14:1679

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang CH, Wang MX, Haider H, Yang JH, Sun JY, Chen YM, Zhou JX, Suo ZG (2013) Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. ACS Appl Mater Interfaces 5:10418–10422

    CAS  PubMed  Google Scholar 

  38. Liu YS, Huang QL, Feng QL (2013) 3D scaffold of PLLA/pearl and PLLA/nacre powder for bone regeneration. Biomed Mater 8:065001–065009

    CAS  PubMed  Google Scholar 

  39. Yan H, Chen X, Bao C, Wu S, He S, Lin Q (2020) Alginate derivative-functionalized silica nanoparticles: surface modification and characterization. Polym Bull 77:73–84

    CAS  Google Scholar 

  40. Islam MS, Karim MR (2010) Fabrication and characterization of poly (vinyl alcohol)/alginate blend nanofibers by electrospinning method. Colloid Surf A 366:135–140

    CAS  Google Scholar 

  41. Yang JS, Ren HB, Xie YJ (2011) Synthesis of amidic alginate derivatives and their application in microencapsulation of λ-cyhalothrin. Biomacromol 12:2982–2987

    CAS  Google Scholar 

  42. Yan HQ, Chen XQ, Feng MX, Shi ZF, Zhang W, Wang Y, Ke CR, Lin Q (2019) Entrapment of bacterial cellulose nanocrystals stabilized Pickering emulsions droplets in alginate beads for hydrophobic drug delivery. Colloid Surf B 177:112–120

    CAS  Google Scholar 

  43. Li Z, Chen X, Bao C, Liu C, Liu C, Li D, Yan H, Lin Q (2021) Fabrication and evaluation of alginate/bacterial cellulose nanocrystals-chitosan-gelatin composite scaffolds. Molecules 26:5003

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yan H, Chen X, Bao C, Yi J, Lei M, Ke C, Zhang W, Lin Q (2020) Synthesis and assessment of CTAB and NPE modified organomontmorillonite for the fabrication of organo-montmorillonite/alginate based hydrophobic pharmaceutical controlled-release formulation. Colloid Surf B 191:110983

    CAS  Google Scholar 

  45. Liu M, Dai L, Shi H, Xiong S, Zhou C (2015) In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering. Mater Sci Eng C 49:700–712

    CAS  Google Scholar 

  46. Valente JFA, Valente TAM, Alves P, Ferreira P, Silva A, Correia IJ (2012) Alginate based scaffolds for bone tissue engineering. Mater Sci Eng C 32:2596–2603

    CAS  Google Scholar 

  47. Sowjanya JA, Singh J, Mohita T, Sarvanan S, Moorthi A, Srinivasan N, Selvamurugan N (2013) Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloid Surf B 109:294–300

    CAS  Google Scholar 

  48. Chen F, Tian M, Zhang D, Wang J, Wang Q, Yu X, Zhang X, Wan C (2012) Preparation and characterization of oxidized alginate covalently cross-linked galactosylated chitosan scaffold for liver tissue engineering. Mater Sci Eng C 32(2):310–320

    Google Scholar 

  49. Shi XT, Wang YJ, Ren L, Zhao NR, Gong YH, Wang DA (2009) Novel mesoporous silica-based antibiotic releasing scaffold for bone repair. Acta Biomater 5:1697–1707

    CAS  PubMed  Google Scholar 

  50. Lewandowska-Łańcucka J, Mystek K, Mignon A, Vlierberghe SV, Łatkiewicz A, Nowakowska M (2017) Alginate- and gelatin-based bioactive photocross-linkable hybridmaterials for bone tissue engineering. Carbohydr Polym 157:1714–1722

    PubMed  Google Scholar 

  51. Domingues RMA, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromol 15:2327–2346

    CAS  Google Scholar 

  52. Pattanashetti NA, Biscaia S, Moura C, Mitchell GR, Kariduraganavar MY (2019) Development of novel 3D scaffolds using BioExtruder by the incorporation of silica into polycaprolactone matrix for bone tissue engineering. Mater Today Commun 21:100651

    CAS  Google Scholar 

  53. Yang X, Li Y, Liu X, Huang Q, He W, Zhang R, Feng Q, Benayahu D (2016) The stimulatory effect of silica nanoparticles on osteogenic differentiation of human mesenchymal stem cells. Biomed Mater 12(1):015001

    PubMed  Google Scholar 

  54. Shie MY, Ding SJ, Chang HC (2011) The role of silicon in osteoblast-like cell proliferation and apoptosis. Acta Biomater 7(6):2604–2614

    CAS  PubMed  Google Scholar 

  55. Ge C, Xiao G, Jiang D, Franceschi RT (2007) Critical role of the extracellular signal–regulated kinase–MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol 176(5):709–718

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully thank the financial support from the National Natural Science Foundation of China (51963009), the Natural Science Foundation of Hainan Province (220MS035), the Open Fund for Innovation and Entrepreneurship of College Students of Hainan Normal University (hscy2022-14), the Innovation and Scientific Research Projects for Undergraduates of Hainan Province and the Innovation and Scientific Research Projects for Undergraduates of Hainan Normal University (hscx2022-30).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiqiong Yan.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 568 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Liao, Y., Chen, X. et al. Preparation and properties of homogeneous oxidized sodium alginate/silica/polyacrylamide–gelatin composite hydrogel based on interpenetrating network technology. Polym. Bull. 80, 11899–11917 (2023). https://doi.org/10.1007/s00289-022-04631-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04631-2

Keywords

Navigation