Skip to main content
Log in

Electrical conductivity of carbon ash surface immersed with nanoparticles (Co3O4-Cr2O3) for spectroscopic selective surfaces

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Promote the conductivity of the nanocomposite thin films Co3O4:Cr2O3/C to produce a spectroscopic selective surface with high performance to absorb solar light. The nanocomposite coating Co3O4:Cr2O3/C has been fabricated by a spin coating method and casting method. Different concentrations of nanoparticles (Co3O4:Cr2O3) were immersed in the carbon ash (C) to comprise the economic nanocoating. The XRD test of the patterns has been carried out for all the specimens to prove the crystalline structure of nanocomposite thin films. The nanocomposite thin film Co3O4:Cr2O3/C has been tested at a frequency range between 375 kHz and 1.5 MHz, and the electrical properties of the thin films have been investigated for real and imaginary of the dielectric constant, conductivity, volume with surface energies of losses, and loss factor. The content of carbon (C) in the nanocomposite Co3O4:Cr2O3/C is fixed ratio (7% wt.), but the concentration of Co3O4 has various ratios (0.5, 1, 1.5, 2, and 2.5% wt.), and Cr2O3 has several ratios (2.5, 2, 1.5, 1, and 0.5% wt.), that have the symbols F, G, H, I, and K. These nanoparticles exhibited a worthy improvement in the structure of carbon ash, thereby, the XRD inspection of topography confirm the nanocomposite Co3O4:Cr2O3/C thin films have a crystalline structure. Generally, the results have demonstrated that these nanocomposite Co3O4:Cr2O3/C thin films have good conductivity. Therefore, thin films of nanocomposite can use in photovoltaics, solar cell, and coating over a flat plate collector owing to their properties as the high absorption to light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Fouad SS, Amin GAM, El-Bana MS (2018) Physical and optical characterizations of Ge10Se90−xTex thin films in view of their spectroscopic ellipsometry data. J Non Cryst Solid 481:314–320

    Article  CAS  Google Scholar 

  2. Gao W, El Amraoui M, Liao M, Kawashima H, Duan Z, Deng D et al (2013) Mid-infrared supercontinuum generation in a suspended-core As2S3chalcogenidemicrostructured optical fiber. Opt Expr 21:9573–9583

    Article  CAS  Google Scholar 

  3. Sharma I, Tripathi SK, Barman PB (2007) An optical study of a-Ge20Se80−xInx thin films in sub-band gap region. J Phys D Appl Phys 40:4460–4465

    Article  CAS  Google Scholar 

  4. Fayek SA, El-Ocker MM, Hassanien AS (2001) Optical and electrical properties of Ge10+xSe40Te50−x. thin film. Mater Chem Phys 70:231–235

    Article  CAS  Google Scholar 

  5. Moguš-Milanković A, Pavić L, Srilatha K, Rao ChS, Srikumar T, Gandhi Y, Veeraiah N (2012) Electrical, dielectric and spectroscopic studies on MnO doped LiI–AgI–B2O3 glasses. J Appl Phys 111(1):013714

    Article  Google Scholar 

  6. Pavića L, Moguš-Milanković A, Rao PR, Šantić VR, Kumar NV (2014) Effect of alkali-earth modifier ion on electrical, dielectric and spectroscopic properties of Fe2O3 doped Na2SO4-MO-P2O5 glass system. J Alloy Compd 604:352–362

    Article  Google Scholar 

  7. Morsi RMM, Basha MAF (2011) Effect of heat-treatment on the electrical and dielectric properties of a TiO2-containing lithia–calcia–silica glass and glass ceramics. Mater Chem Phys 129:1233–1239

    Article  CAS  Google Scholar 

  8. Scholz F (2011) From the leiden jar to the discovery of the glass electrode by max cremer. J Solid State Electrochem 15:5–14

    Article  CAS  Google Scholar 

  9. Hassanien AS, Neffati R, Aly KA (2020) Impact of Cd-addition upon opticalproperties and dispersion parametersof thermally evaporated CdxZn1−xSe films: discussions on bandgapengineering, conduction and valence band positions. Optik 212:164681. https://doi.org/10.1016/j.ijleo.2020.164681

    Article  CAS  Google Scholar 

  10. Hassanien AS, Sharma I (2020) Optical properties of quaternary a-Ge15-x Sbx Se50 Te35thermallyevaporated thin-films: refractive index dispersion and single oscillator parameters. Optik 200:163415. https://doi.org/10.1016/j.ijleo.2019.163415

    Article  CAS  Google Scholar 

  11. Ahmed H, Hashim A, Abduljalil HM (2019) Analysis of structural, electrical and electronic properties of (polymer nanocomposites/ silicon carbide) for antibacterial application. Egypt J Chem 62:767–776

    Google Scholar 

  12. Hassanien AS, Alamri HR, El-Radaf IM (2020) Impact of film thickness on optical properties and optoelectrical parameters of novel CuGaGeSe4 thin films synthesized by electron beam deposition. Opt Quant Electron. https://doi.org/10.1007/s11082-020-02448-9

    Article  Google Scholar 

  13. Slimani Y, Unal B, Hannachi E, Selmi A, Almessiere M, Nawaz A, Baykal I, Ercan MY (2019) Frequency and dc bias voltage dependent dielectric properties and electricalconductivity of BaTiO3 SrTiO3/(SiO2)x nanocomposites. Ceram Int 45:11989–12000

    Article  CAS  Google Scholar 

  14. Abed RN, Abdallh M, Rashad AA, Hadawey A, Yousif E (2021) New coating synthesis comprising CuO:NiO/C to obtain highly selective surface for enhancing solar energy absorption. J Polym Bull 78:433–455

    Article  CAS  Google Scholar 

  15. Hassanien AS, Akl AA (2016) Electrical transport properties and Mott’s parameters of chalcogenide cadmium sulphoselenide bulk glasses. J Non Cryst Solid 432:471–479

    Article  CAS  Google Scholar 

  16. Khan SA, Al-Hazmi FS, Al-Heniti S, Faidah AS, Al-Ghamdi AA (2010) Effect of cadmium addition on the optical constants of thermally evaporated amorphous Se–S–Cd thin films. Curr Appl Phys 10:145–152

    Article  Google Scholar 

  17. Abed RN, Abed ARN, Khamas FA, Abdallh M, Yousif E (2020) High performance thermal coating comprising (Cuo:NiO) nanocomposite/c spectrally selective to absorb solar energy. Prog Color Colorants Coat 13:275–284

  18. Farag AAM, Ashery A, Shenashen MA (2012) Optical absorption and spectrophotometric studies on the optical constants and dielectric of poly (o-toluidine) (POT) films grown by spin coating deposition. Phys B Cond Matter 407:2404–2411

    Article  CAS  Google Scholar 

  19. Abed RN, Yousif E, Abed ARN, Rashad AA, Hadawey A, Jawad AH (2021) Optical properties of PVC composite modified during light exposure to give high absorption enhancement. J Non Crys Solid 570:120946. https://doi.org/10.1016/j.jnoncrysol.2021.120946

    Article  CAS  Google Scholar 

  20. Kumar MP, Sankarappa T, Kumar BV, Nagaraja N (2009) Dielectric relaxation studies in transition metal ions doped tellurite glasses. Solid State Sci 11:214–218

    Article  Google Scholar 

  21. Abed RN, Abed ARN, Yousif E (2021) Carbon surfaces doped with (Co3O4-Cr2O3) nanocomposite for High-temperature photo thermal solar energy conversion via spectrally selective surfaces. Prog Colo Colo Coat 14:301–315

    CAS  Google Scholar 

  22. Bukhari SMH, Khan S, Rehanullah M, Ranjha NM (2015) Synthesis and characterization of chemically Cross-linked acrylic acid/gelatin hydrogels: effect of pH and composition on swelling and drug release. Inter J Poly Sci. https://doi.org/10.1155/2015/187961,vol.2015:1-15

    Article  Google Scholar 

  23. Nagaveena S, Mahadevan CK (2014) Preparation by a facile method and characterization of amorphous and crystalline nickel sulfide nanophases. J All Comp 582:447–456

    Article  CAS  Google Scholar 

  24. Dahshan A, Aly KA (2015) Characterization of new quaternary Ge20Se60Sb20−xAgx (0 ≤ x ≤ 20 wt. %) glasses. J Non Cryst Solid 408:62–65

    Article  CAS  Google Scholar 

  25. Hassanien AS, Akl AA (2015) Estimation of some physical characteristics of chalcogenide bulk Cd50S50−xSex glassy systems. J Non Cryst Solid 428:112–120

    Article  CAS  Google Scholar 

  26. Ni N, Zhao K (2007) Dielectric analysis of chitosan gel beads suspensions: influence of low crosslinking agent concentration on the dielectric behavior. J Coll Int Sci 312:256–264

    Article  CAS  Google Scholar 

  27. Sangawar VS, Dhokne RJ, Ubale AU, Chikhalikar PS, Meshram SD (2007) Structural characterization and thermally stimulated discharge conductivity (TSDC) study in polymer thin films. Bull Mater Sci 30:163–166

    Article  CAS  Google Scholar 

  28. Mondal SP, Aluguri R, Ray SK (2009) Dielectric and transport properties of carbon nanotube-CdS nanostructures embedded in polyvinyl alcohol matrix. J Appl Phys 105(11):114317

    Article  Google Scholar 

  29. Kana JB, Ndjaka JM, Vignaud G, Gibaud A, Maaza M (2011) thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry. Opt Commun 284:807–812

    Article  Google Scholar 

  30. Ganaie M, Zulfequar M (2015) Effect of zinc additive on dielectric properties of Cd–Se glassy system. Prog Nat Sci Mater Int 25:222–228

    Article  CAS  Google Scholar 

  31. Atyia HE, Hega NA (2013) Optical spectroscopy and dispersion parameters of Ge15Se60X25 (X = As or Sn) amorphous thin films. Eur Phys J Appl Phys 63:10301-1–10301-7

    Article  Google Scholar 

  32. Sarkar S, Das NS, Chattopadhyay KK (2014) Optical constants, dispersion energy parameters and dielectric properties of ultra-smooth nanocrystalline BiVO4 thin films prepared by rf-magnetron sputtering. Solid State Sci 33:58–66

    Article  CAS  Google Scholar 

  33. Hassanien AS (2016) Studies on dielectric properties opto-electrical parameters and electronic polarizability of thermally evaporated amorphousCd50S50-xSex thin films. J All Comp 671:566–578

    Article  CAS  Google Scholar 

  34. Atyia HE, Hegab NA (2014) Determination and analysis of optical constants for Ge15Se60Bi25 thin films. Phys B Cond Matter 454:189–196

    Article  CAS  Google Scholar 

  35. Kumar MP, Sankarappa T, Kumar S (2008) AC conductivity studies in rare earth ions doped vanadotellurite glasses. J All Comp 464:393–398

    Article  CAS  Google Scholar 

  36. Abd-Elnaiema AM, Moustafaa S, Abdelraheem AM, Abdel-Rahim MA, Mahmoud AZ (2020) Effects of annealing on structural and optical properties of Ge20Se70Sn10 thin films for optoelectronic applications. J Non Cryst Solid 549:120353. https://doi.org/10.1016/j.jnoncrysol.2020.120353

    Article  CAS  Google Scholar 

  37. Yadav A, Khasa S, Hooda A, Dahiya MS, Agarwal A, Chand P (2016) EPR and impedance spectroscopic investigations on lithium bismuthborate glasses containing nickel and vanadium ions. Spectrochim. Acta Part A Mol Biomol Spectrosc 157:129–137

    Article  CAS  Google Scholar 

  38. Pershina SV (2021) Structural, thermal and electrical properties of Li2O–Al2O3 GeO2 P2O5 glasses. J Alloy Comp 871:159532. https://doi.org/10.1016/j.jallcom.2021.159532

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Al-Nahrain University from Department of Chemistry, College of Science and Department of Mechanical Engineering, Engineering College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasheed N. Abed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abed, R.N., Abed, A.R.N. & Abed, A.N. Electrical conductivity of carbon ash surface immersed with nanoparticles (Co3O4-Cr2O3) for spectroscopic selective surfaces. Polym. Bull. 80, 11207–11224 (2023). https://doi.org/10.1007/s00289-022-04601-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04601-8

Keywords

Navigation