Skip to main content
Log in

Structural properties of HPMC/PEG/CS thermosensitive porous hydrogels

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Thermosensitive hydrogels have widely applications attributed to their special characteristics such as stimuli–responsivity. However, conventional hydrogels are limited owing to the slow response rate. In this study, a thermosensitive porous hydrogel with fast phase transition were successfully synthesized by adding Na2CO3/CH3COOH solution in the hydroxypropyl methylcellulose (HPMC)/polyethylene glycol (PEG)/chitosan (CS) mixture. The structural characteristics of the HPC porous system were investigated by FT-IR and SEM. The Na2CO3/CH3COOH mixture content was optimized by thermosensitivity and water retention experiments. Furthermore, N2 adsorption–desorption isotherms, rotary rheometer, and DSC experiments were carried out to analyze the parameters of porous, rheological properties, and heat–absorption ability. Results showed that the addition of Na2CO3/CH3COOH mixture effectively improved the porosity parameters of system. When the Na2CO3/CH3COOH mixture content was 0.375 wt%/0.3 wt%, the HPC porous system formed a uniform and interpenetrating framework. The phase transition took just 28 s, and the water retention increased by 58%. The porous diameter was primarily between 80 and 500 A, and pore volume (VT) increased by 0.0348 cm3 g−1. The porous structure could retain a large amount of crystalline water, which increased the absorption enthalpy of the system by 241.383 J g–1.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Boonrat O, Tantishaiyakul V, Hirun N (2022) Micellization and gelation characterisics of different blends of pluronic F127/methylcellulose and their use as mucoadhesive in situ gel for periodontitis. Polym Bull 79(7):4515–4534. https://doi.org/10.1007/s00289-021-03722-w

    Article  CAS  Google Scholar 

  2. Weimin C, Xiangming H, Jun X et al (2017) An intelligent gel designed to control the spontaneous combustion of coal: Fire prevention and extinguishing properties. Fuel 210:826–835. https://doi.org/10.1016/j.fuel.2017.09.007

    Article  CAS  Google Scholar 

  3. Li J, Chen Y, He S et al (2023) High performance Na3V2 (PO4)3 with nitrogen-chlorine co-doped carbon matrix in-situ synthesized in chitosan quaternary ammonium hydrogel for sodium ion batteries. Chem Eng J 452:139311. https://doi.org/10.1016/j.cej.2022.139311

    Article  CAS  Google Scholar 

  4. Pirrone N, Bella F, Hernández S (2022) Solar H2 production systems: current statu-s and prospective applications. Green Chem 24(14):379–5402. https://doi.org/10.1039/d2gc00292b

    Article  CAS  Google Scholar 

  5. Di J, Zhong M, Wang Y (2021) Polyvinylpyrrolidone/polyvinyl alcohol blends modification on light absorbing layer to improve the efficiency and stability of perovskite solar cells. Mater Sci Semicond Process 133:105941. https://doi.org/10.1016/j.mssp.2021.105941

    Article  CAS  Google Scholar 

  6. Zhang Q, Duan J, Guo Q et al (2022) Thermal-Triggered dynamic disulfide bond self-heals inorganic perovskite solar cells. Angew Chem Int Ed 61(8):e202116632. https://doi.org/10.1002/anie.202116632

    Article  CAS  Google Scholar 

  7. Galliano S, Bella F, Bonomo M et al (2021) Xanthan-based hydrogel for stable and efficient quasi-solid truly aqueous dye-sensitized solar cell with cobalt mediator. Solar Rrl 5(7):2000823. https://doi.org/10.1002/solr.202000823

    Article  CAS  Google Scholar 

  8. Tian C, Li C, Chen D et al (2021) Sandwich hydrogel with confined plasmonic Cu/carbon cells for efficient solar water purification. J Mater Chem A 9(27):15462–15471. https://doi.org/10.1039/d1ta02927d

    Article  CAS  Google Scholar 

  9. Li J, Yan L, Li X et al (2022) Porous polyvinyl alcohol/biochar hydrogel induced high yield solar steam generation and sustainable desalination. J Environ Chem Eng 10(3):107690. https://doi.org/10.1016/j.jece.2022.107690

    Article  CAS  Google Scholar 

  10. Wei W, Jn B, Lc B et al (2020) Synthesis of carboxymethyl cellulose-chitosan-montmorillonite nanosheets composite hydrogel for dye effluent remediation. Int J Biol Macromol 165:1–10. https://doi.org/10.1016/j.ijbiomac.2020.09.154

    Article  CAS  Google Scholar 

  11. ChiangH H, SuC Y, HsuL H et al (2021) Improved anti-washout property of calcium sulfate/tri-calcium phosphate premixed bone substitute with glycerin and hydroxypropyl methylcellulose. Appl Sci 11(17):8136. https://doi.org/10.3390/app11178136

    Article  CAS  Google Scholar 

  12. DezottiR S, FurtadoL M, Yee M et al (2021) Tuning the mechanical and thermal properties of hydroxypropyl methylcellulose cryogels with the aid of surfactants. Gels 7(3):118. https://doi.org/10.3390/gels7030118

    Article  CAS  Google Scholar 

  13. PaulT J, StrzelczykA K, Schmidt S (2021) Temperature-controlled adhesion to carbohydrate functionalized microgel films: An E. coli and lectin binding study. Macromol Biosci 21(4):2000386. https://doi.org/10.1002/mabi.202000386

    Article  CAS  Google Scholar 

  14. Hu M, Yang J, Xu J (2021) Structural and biological investigation of chitosan/hyaluronic acid with silanized-hydroxypropyl methylcellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering. Drug Delivery 28(1):607–619. https://doi.org/10.1080/10717544.2021.1895906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bigi F, Haghighi H, SieslerH W et al (2021) Characterization of chitosan-hydroxypropyl methylcellulose blend films enriched with nettle or sage leaf extract for ac-tive food packaging applications. Food Hydrocolloids 120:106979. https://doi.org/10.1016/j.foodhyd.2021.106979

    Article  CAS  Google Scholar 

  16. Wang T, Chen L, Shen T et al (2016) Preparation and properties of a novel thermo-sensitive hydrogel based on chitosan/hydroxypropyl methylcellulose/glycerol. Int J Biol Macromol 93:775–782. https://doi.org/10.1016/j.ijbiomac.2016.09.038

    Article  CAS  PubMed  Google Scholar 

  17. Diego P, Raffaella C, Athanasios S et al (2018) Chitosan loaded into a hydrogel delivery system as a strategy to treat vaginal co-Infection. Pharmaceutics 10(1):23. https://doi.org/10.3390/pharmaceutics10010023

    Article  CAS  Google Scholar 

  18. Deng N, Li Y, Li Q et al (2022) Multi-functional yolk-shell structured materials and their applications for high-performance lithium ion battery and lithium sulfur battery. Energy Storage Mater 53:684–743. https://doi.org/10.1016/j.ensm.2022.08.003

    Article  Google Scholar 

  19. Dansih Z, Ijaz H, Razzaque G et al (2021) Facile synthesis of three dimensional porous hydrogel and its evaluation. Polym Bull 79(9):7407–7428. https://doi.org/10.1007/s00289-021-03855-y

    Article  CAS  Google Scholar 

  20. Fei Y, HeW J, LiH W et al (2019) Role of acid treatment combined with the use of urea in forming cellulose hydrogel. Carbohyd Polym 223:115059. https://doi.org/10.1016/j.carbpol.2019.115059

    Article  CAS  Google Scholar 

  21. Wang L, Dong S, Liu Y et al (2020) Fabrication of injectable, porous hyaluronic acid hydrogel based on an in-situ bubble-forming hydrogel entrapment process. Polymers 12(5):1138. https://doi.org/10.3390/polym12051138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li YL, Si S, GaoP C et al (2021) A tough chitosan-alginate porous hydrogel prepared by simple foaming method. J Solid State Chem 294:121797. https://doi.org/10.1016/j.jssc.2020.121797

    Article  CAS  Google Scholar 

  23. Lei X, Shao C, Shou X et al (2021) Porous hydrogel arrays for hepatoma cell spheroid formation and drug resistance investigation. Bio-Des Manuf 4(4):842–850. https://doi.org/10.1007/s42242-021-00141-8

    Article  CAS  Google Scholar 

  24. Naeimi M, Tajedin R, Farahmandfar F et al (2020) Preparation and characterization of vancomycin-loaded chitosan/PVA/PEG hydrogels for wound dressing. Mater Res Exp 7(9):095401. https://doi.org/10.1088/2053-1591/abb154

    Article  CAS  Google Scholar 

  25. Ma L, Huang X, Sheng Y et al (2021) Experimental study on thermosensitive hydrogel used to extinguish class A fire. Polymers 13(3):367. https://doi.org/10.3390/polym13030367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yousaf H, Khalid I, Barkat K et al (2021) Preparation of smart PVP/HPMC based IPN hydrogel, its characterization and toxicity evaluation. Pak J Pharm Sci 34(5):1849–1859. https://doi.org/10.36721/PJPS.2021.34.5.SUP.1849-1859.1

    Article  CAS  PubMed  Google Scholar 

  27. SeoJ W, SuR S, LeeM Y et al (2021) Injectable hydrogel derived from chitosan with tunable mechanical properties via hybrid-crosslinking system. Carbohyd Polym 251:117036. https://doi.org/10.1016/j.carbpol.2020.117036

    Article  CAS  Google Scholar 

  28. Harada N, Mitsukami Y, Uyama H (2021) Preparation and characterization of water-swellable hydrogel-forming porous cellulose beads. Polymer 215:123381. https://doi.org/10.1016/j.polymer.2021.123381

    Article  CAS  Google Scholar 

  29. Aleid S, Wu M, Li R et al (2022) Salting-in effect of zwitterionic polymer hydrogel facilitates atmospheric water harvesting. ACS Mater Lett 4(3):511–520. https://doi.org/10.1021/acsmaterialslett.1c00723

    Article  CAS  Google Scholar 

  30. Guo W, Chen J, Sun S et al (2018) Investigation of water diffusion in hydrogel pore-filled membrane via 2D correlation time-dependent ATR-FTIR spectroscopy. J Mol Struct 1171:600–604. https://doi.org/10.1016/j.molstruc.2018.06.048

    Article  CAS  Google Scholar 

  31. Xu H, Xu P, Wang D et al (2020) A dimensional stable hydrogel-born foam wit-h enhanced mechanical and thermal insulation and fire-retarding properties via fast microwave foaming. Chem Eng J 399:125781. https://doi.org/10.1016/j.cej.2020.125781

    Article  CAS  Google Scholar 

  32. Su G, Zhou T, Liu X et al (2017) Two-step volume phase transition mechanism of poly(N-vinylcaprolactam) hydrogel online-tracked by two-dimensional correlation spectroscopy. Phys Chem Chem Phys 19(40):27221–27232. https://doi.org/10.1039/C7CP04571A

    Article  CAS  PubMed  Google Scholar 

  33. Mukhtar A, Mellon N, Saqib S et al (2020) Extension of BET theory to CO2 adsorption isotherms for ultra-microporosity of covalent organic polymers. SN Appl Sci 2(7):1232. https://doi.org/10.1007/s42452-020-2968-9

    Article  CAS  Google Scholar 

  34. Zhang X, Jing S, Chen Z et al (2017) Fabricating 3D hierarchical porous TiO2 and SiO2 with high specific surface area by using nanofibril-interconnected cellulose aerogel as a new biotemplate. Ind Crops Prod 109:790–802. https://doi.org/10.1016/j.indcrop.2017.09.047

    Article  CAS  Google Scholar 

  35. Shi Q, Qin B, Hao Y et al (2022) Experimental investigation of the flow and extinguishment characteristics of gel-stabilized foam used to control coal fire. Energy 247:123484. https://doi.org/10.1016/j.energy.2022.123484

    Article  CAS  Google Scholar 

  36. Thouvenin A, Toussaint B, Marinovic J et al (2022) Development of thermosensitive and mucoadhesive hydrogel for buccal delivery of (S)-Ketamine. Pharmaceutics 14(10):2039. https://doi.org/10.3390/pharmaceutics14102039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ibrahim SM (2020) Arabic gum grafted PEGDMA hydrogels: synthesis, physico-chemical characterization and in-vitro release of hydrophobic drug. Macromol Res 28(1):1220–1231. https://doi.org/10.1007/s13233-020-8166-1

    Article  CAS  Google Scholar 

  38. Skwarczynska AL, Kuberski S, Maniukiewicz W et al (2020) Thermosensitive chitosan gels containing calcium glycerophosphate. Spectrochim Acta Part A-molecular Blomol Spectrosc 201:24–33. https://doi.org/10.1016/j.saa.2018.04.050

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under the Surface Project (52174206) and the Young Innovation Team Project (21JP074) of Shaanxi Provincial Education Department, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Shi, T., Liu, X. et al. Structural properties of HPMC/PEG/CS thermosensitive porous hydrogels. Polym. Bull. 80, 10863–10880 (2023). https://doi.org/10.1007/s00289-022-04576-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04576-6

Keywords

Navigation