Skip to main content
Log in

Probing the separation efficiency of sulfur-doped graphitic carbon nitride (g-C3N4)/polysulfone low-pressure ultrafiltration mixed matrix membranes

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Pre-synthesized sulfur-doped graphitic carbon nitride (S–g-C3N4) nanoparticles were blended with polysulfone (PSf) casting solution to form low-pressure ultrafiltration mixed matrix membranes (MMM) using a nonsolvent-induced phase inversion method. The prepared materials were characterized using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectrometer, scanning electron microscopy (SEM), atomic force microscopy (AFM), water contact angle and water sorption to ascertain their morphological, chemical, wettability, surface and porosity measurements. The membrane performance was evaluated using water flux and bovine serum albumin (BSA) rejection. ATR-FTIR results confirmed that both the membranes and the nanoparticles are carbon-based and this would promote intercalation. The addition of nanoparticles increased the surface roughness of the membranes and enhanced membrane surface wettability with the reduction of the contact angle from 74.7° for pristine membranes to 59.9° for 0.5 wt% S–g-C3N4 loaded membranes. Also water absorption increased upon nanoparticle loading with maximum uptake at 0.3 wt% nanoparticle loading. In addition, at 0.3 wt% nanoparticle loading, the membranes showed the highest porosity (46%) and BSA rejection of up to 99% compared to 84.8% for the pristine membranes. The improved BSA rejection could be linked to the reduction in pore density upon S–g-C3N4 incorporation. Overall the enhancement in hydrophilic properties and reduction in fouling propensity of the fabricated MMMs confirms that the modified membranes have a potential to be used for water separation and purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zahid M, Rashid A, Akram S, Rehan ZA, Razzaq W (2018) A comprehensive review on polymeric nano-composite membranes for water treatment. J Membr Sci Technol 08:1–20. https://doi.org/10.4172/2155-9589.1000179

    Article  Google Scholar 

  2. Bagheripour E, Moghadassi AR, Hosseini SM, Ray MB, Parvizian F, Van der Bruggen B (2018) Highly hydrophilic and antifouling nanofiltration membrane incorporated with water-dispersible composite activated carbon/chitosan nanoparticles. Chem Eng Res Des 132:812–821. https://doi.org/10.1016/j.cherd.2018.02.027

    Article  CAS  Google Scholar 

  3. Saraswathi MSSA, Rana D, Alwarappan S, Gowrishankar S, Vijayakumar P, Nagendran A (2019) Polydopamine layered poly (ether imide) ultrafiltration membranes tailored with silver nanoparticles designed for better permeability, selectivity and antifouling. J Ind Eng Chem 76:141–149. https://doi.org/10.1016/j.jiec.2019.03.014

    Article  CAS  Google Scholar 

  4. Kotp YH (2019) Removal of organic pollutants using polysulfone ultrafiltration membrane containing polystyrene silicomolybdate nanoparticles: case study: Borg El Arab area. J Water Process Eng 30:100553. https://doi.org/10.1016/j.jwpe.2018.01.008

    Article  Google Scholar 

  5. Rodrigues R, Mierzwa JC, Vecitis CD (2019) Mixed matrix polysulfone/clay nanoparticles ultrafiltration membranes for water treatment. J Water Process Eng 31:100788. https://doi.org/10.1016/j.jwpe.2019.100788

    Article  Google Scholar 

  6. Karimnezhad H, Navarchian AH, Tavakoli Gheinani T, Zinadini s, (2019) Incorporation of iron oxyhydroxide nanoparticles in polyacrylonitrile nanofiltration membrane for improving water permeability and antifouling property. React Funct Polym 135:77–93. https://doi.org/10.1016/j.reactfunctpolym.2018.12.016

    Article  CAS  Google Scholar 

  7. Sabri NSM, Hasbullah H, Said N, Ibrahim N, Kasmani RM, Ali RR, Rahman SA (2017) Hydrophilicity enhancement of metal oxide nanoparticles incorporated polysulfone ultrafiltration membrane. J Appl Membr Sci Technol 20:29–38. https://doi.org/10.11113/amst.v20i1.26

    Article  Google Scholar 

  8. Xu Z, Ye S, Fan Z, Ren F, Gao C, Li Q, Li G, Zhang G (2015) Preparation of Cu2O nanowire-blended polysulfone ultrafiltration membrane with improved stability and antimicrobial activity. J Nanopart Res 17:409. https://doi.org/10.1007/s11051-015-3215-y

    Article  CAS  Google Scholar 

  9. Karimnezhad H, Navarchian AH, Tavakoli T, Zinadini S (2019) Incorporation of iron oxyhydroxide nanoparticles in polyacrylonitrile nanofiltration membrane for improving water permeability and antifouling property. React Funct Polym 135:77–93. https://doi.org/10.1016/j.reactfunctpolym.2018.12.016

    Article  CAS  Google Scholar 

  10. Bae TH, Tak TM (2005) Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J Membr Sci 249:1–8. https://doi.org/10.1016/j.memsci.2004.09.008

    Article  CAS  Google Scholar 

  11. Leo CP, Cathie Lee WP, Ahmad AL, Mohammad AW (2012) Polysulfone membranes blended with ZnO nanoparticles for reducing fouling by oleic acid. Sep Purif Technol 89:51–56. https://doi.org/10.1016/j.seppur.2012.01.002

    Article  CAS  Google Scholar 

  12. Mollahosseini A, Rahimpour A, Jahamshahi M, Peyravi M, Khavarpour M (2012) The effect of silver nanoparticle size on performance and antibacteriality of polysulfone ultra-filtration membrane. DES 306:41–50. https://doi.org/10.1016/j.desal.2012.08.035

    Article  CAS  Google Scholar 

  13. Yang F, Ding G, Wang J, Liang Z, Gao B, Dou M (2020) Self-cleaning, antimicrobial and antifouling membrane via integrating mesoporous graphitic carbon nitride into polyvinylidene fluoride. J Membr Sci 606:1–11. https://doi.org/10.1016/j.memsci.2020.118146

    Article  CAS  Google Scholar 

  14. Taurozzi JS, Arul H, Bosak VZ, Burban AF, Voice TC, Bruening ML, Tarabara VV (2008) Effect of filler incorporation route on the properties of polysulfone-silver nanocomposite membranes of different porosities. J Membr Sci 325:58–68. https://doi.org/10.1016/j.memsci.2008.07.010

    Article  CAS  Google Scholar 

  15. Zhang M, Yang Y, An X, Hou L (2021) A critical review of g-C3N4-based photocatalytic membrane for water purification. Chem Eng J 412:128663. https://doi.org/10.1016/j.cej.2021.128663

    Article  CAS  Google Scholar 

  16. Nadig AR, Naik NS, Padaki M, Pai RK (2021) Impact of graphitic carbon nitride nanosheets in mixed-matrix membranes for removal of heavy metals from water. J Water Process Eng 41:1–11. https://doi.org/10.1016/j.jwpe.2021.102026

    Article  Google Scholar 

  17. Wang Y, Gao B, Yue Q, Wang Z (2020) Graphitic carbon nitride (g-C3N4)-based membranes for advanced separation. J Mater Chem A 8:19133–19155. https://doi.org/10.1039/d0ta06729f

    Article  CAS  Google Scholar 

  18. Ge M, Wang X, Wu S, Long Y, Yang Y, Zhang J (2021) Highly antifouling and chlorine resistance polyamide reverse osmosis membranes with g-C3N4 nanosheets as nanofiller. Sep Purif Technol 258:117980. https://doi.org/10.1016/j.seppur.2020.117980

    Article  CAS  Google Scholar 

  19. Sofiah H, Asmadi A, Endut A (2011) Preparation and characterization of a polysulfone ultrafiltration membrane for bovine serum albumin separation: effect of polymer concentration. Desalin Water Treat 32:248–255. https://doi.org/10.5004/dwt.2011.2707

    Article  CAS  Google Scholar 

  20. Cao K, Jiang Z, Zhang X, Zhang Y, Zhao J (2015) Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix. J Membr Sci 490:72–83. https://doi.org/10.1016/j.memsci.2015.04.050

    Article  CAS  Google Scholar 

  21. Ali N, Sofiah H, Asmadi A, Endut A (2011) Preparation and characterization of a polysulfone ultrafiltration membrane for bovine serum albumin separation: effect of polymer concentration. Desalin Water Treat 32:248–255. https://doi.org/10.5004/dwt.2011.2707

    Article  CAS  Google Scholar 

  22. Ariono D, Aryanti PTP, Wardani AK, Wenten IG (2018) Analysis of protein separation mechanism in charged ultrafiltration membrane. J Eng Technol Sci 50:202–223. https://doi.org/10.5614/j.eng.technol.sci.2018.50.2.4

    Article  CAS  Google Scholar 

  23. Striemer CC, Gaborski TR, McGrath JL, Fauchet PM (2007) Charge and size-based separation of macromolecules using ultrathin silicon membranes. Nature 445:749–753. https://doi.org/10.1038/nature05532

    Article  CAS  PubMed  Google Scholar 

  24. Ma J, Qin L, Zhang X, Huang H (2016) Temporal evolution of the selectivity-permeability relationship during porous membrane filtration of protein solutions. J Membr Sci 514:385–397. https://doi.org/10.1016/j.memsci.2016.05.022

    Article  CAS  Google Scholar 

  25. Vilakati GD, Hoek EMV, Mamba BB (2015) Investigating the usability of alkali lignin as an additive in polysulfone ultrafiltration membranes. BioResources 10:3079–3096. https://doi.org/10.15376/biores.10.2.3079-3096

    Article  CAS  Google Scholar 

  26. Lin Y, Vincent G, Dizon C, Yamada K, Liu C, Venault A, Lin H, Yoshida M, Hu C (2020) Sulfur-doped g-C3N4 nanosheets for photocatalysis: Z-scheme water splitting and decreased biofouling. J Colloid Interface Sci 567:202–212. https://doi.org/10.1016/j.jcis.2020.02.017

    Article  CAS  PubMed  Google Scholar 

  27. Li J, Cao C, Zhu H (2007) Synthesis and characterization of graphite-like carbon nitride nanobelts and nanotubes. Nanotechnology 18:115605. https://doi.org/10.1088/0957-4484/18/11/115605

    Article  CAS  Google Scholar 

  28. Wang K, Li Q, Liu B, Cheng B, Ho W, Yu J (2015) Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl Catal B 176–177:44–52. https://doi.org/10.1016/j.apcatb.2015.03.045

    Article  CAS  Google Scholar 

  29. Yu J, Wang S, Cheng B, Lin Z, Huang F (2013) Noble metal-free Ni(OH)2-g-C3N4 composite photocatalyst with enhanced visible-light photocatalytic H2-production activity, catalysis. Sci Technol 3:1782–1789. https://doi.org/10.1039/c3cy20878h

    Article  CAS  Google Scholar 

  30. Mao Z, Chen J, Yang Y, Wang D, Bie L, Fahlman BD (2017) Novel g-C3N4/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H2 evolution. ACS Appl Mater Interfaces 9(14):12427–12435. https://doi.org/10.1021/acsami.7b00370

    Article  CAS  PubMed  Google Scholar 

  31. Hu S, Ma L, You J, Li F, Fan Z, Lu G, Liu D, Gui J (2014) Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus. Appl Surf Sci 311:164–171. https://doi.org/10.1016/j.apsusc.2014.05.036

    Article  CAS  Google Scholar 

  32. Kwon YN, Leckie JO (2006) Hypochlorite degradation of crosslinked polyamide membranes. II. Changes in hydrogen bonding behavior and performance. J Membr Sci 282:456–464. https://doi.org/10.1016/j.memsci.2006.06.004

    Article  CAS  Google Scholar 

  33. Giovambattista N, Debenedetti PG, Rossky PJ (2007) Effect of surface polarity on water contact angle and interfacial hydration structure. J Phys Chem B 111:9581–9587. https://doi.org/10.1021/jp071957s

    Article  CAS  PubMed  Google Scholar 

  34. Lee NH, Amy G, Croué JP, Buisson H (2004) Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic matter (NOM). Water Res 35:4511–4523. https://doi.org/10.1016/j.watres.2004.08.013

    Article  CAS  Google Scholar 

  35. Sotto A, Kim J, Arsuaga JM, Del Rosario G, Martínez A, Nam D, Luis P, Van Der Bruggen B (2014) Binary metal oxides for composite ultrafiltration membranes. J Mater Chem A 2:7054–7064. https://doi.org/10.1039/c3ta15347a

    Article  CAS  Google Scholar 

  36. Kearsley EP, Wainwright PJ (2017) Porosity and permeability of foamed concrete. Cement Concr Res 31:805–812. https://doi.org/10.1016/S0008-8846(01)00490-2

    Article  Google Scholar 

  37. Barzegar H, Ali M, Vatanpour V (2020) Antibacterial and antifouling properties of Ag3PO4/GO nanocomposite blended polyethersulfone membrane applied in dye separation. J Water Process Eng 38:101638. https://doi.org/10.1016/j.jwpe.2020.101638

    Article  Google Scholar 

  38. Tavangar T, Karimi M, Rezakazemi M, Raghava K (2020) Textile waste, dyes/inorganic salts separation of cerium oxide-loaded loose nanofiltration polyethersulfone membranes. Chem Eng J 385:123787. https://doi.org/10.1016/j.cej.2019.123787

    Article  CAS  Google Scholar 

  39. Mollahosseini A, Rahimpour A, Jahamshahi M, Peyravi M, Khavarpour M (2012) The effect of silver nanoparticle size on performance and antibacteriality of polysulfone ultrafiltration membrane. Desalination 306:41–50. https://doi.org/10.1016/j.desal.2012.08.035

    Article  CAS  Google Scholar 

  40. De Moura MR, Mattoso LHC, Zucolotto V (2012) Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. J Food Eng 109:520–524. https://doi.org/10.1016/j.jfoodeng.2011.10.030

    Article  CAS  Google Scholar 

  41. Gao Y, Liang L, Zhao S, Qi Y, Zhang W, Sun X, Wang Z, Wang J, Song B (2018) Hydrophilic and antimicrobial core-shell nanoparticles containing guanidine groups for ultrafiltration membrane modification. RSC Adv 8:24690–24700. https://doi.org/10.1039/c8ra03934h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mehrnia MR, Mojtahedi YM, Homayoonfal M (2015) What is the concentration threshold of nanoparticles within the membrane structure? A case study of Al2O3/PSf nanocomposite membrane. Desalination 372:75–88. https://doi.org/10.1016/j.desal.2015.06.022

    Article  CAS  Google Scholar 

  43. Lai CY, Groth A, Gray S, Duke M (2014) Preparation and characterization of poly(vinylidene fluoride)/nanoclay nanocomposite flat sheet membranes for abrasion resistance. Water Res 57:56–66. https://doi.org/10.1016/j.watres.2014.03.005

    Article  CAS  PubMed  Google Scholar 

  44. Arumugham T, Amimodu RG, Kaleekkal NJ, Rana D (2019) ScienceDirect membrane with enhanced interfacial affinity, antifouling and protein separation performances for water treatment application. J Environ Sci 82:57–69. https://doi.org/10.1016/j.jes.2019.03.001

    Article  CAS  Google Scholar 

  45. Razmjou A, Mansouri J, Chen V (2011) The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes. J Membr Sci 378:73–84. https://doi.org/10.1016/j.memsci.2010.10.019

    Article  CAS  Google Scholar 

  46. McCloskey BD, Park HB, Ju H, Rowe BW, Miller DJ, Freeman BD (2012) A bioinspired fouling-resistant surface modification for water purification membranes. J Membr Sci 413–414:82–90. https://doi.org/10.1016/j.memsci.2012.04.021

    Article  CAS  Google Scholar 

  47. Jafarzadeh Y, Yegani R (2015) Analysis of fouling mechanisms in TiO2 embedded high density polyethylene membranes for collagen separation. Chem Eng Res Des 93:684–695. https://doi.org/10.1016/j.cherd.2014.06.001

    Article  CAS  Google Scholar 

  48. Motsa MM, Mamba BB, Thwala JM, Verliefde ARD (2017) Osmotic backwash of fouled FO membranes: cleaning mechanisms and membrane surface properties after cleaning. Desalination 402:62–71. https://doi.org/10.1016/j.desal.2016.09.018

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Eswatini, Faculty of Science and Engineering, in the Department of Chemistry. Sincere gratitude also goes to the Institute for Nanotechnology and Water Sustainability Research, College of Science, Engineering and Technology, the University of South Africa for the characterization of materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gcina D. Vilakati or Machawe M. Motsa.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilakati, G.D., Mtsetfwa, A.S., Mafu, L.D. et al. Probing the separation efficiency of sulfur-doped graphitic carbon nitride (g-C3N4)/polysulfone low-pressure ultrafiltration mixed matrix membranes. Polym. Bull. 80, 8759–8782 (2023). https://doi.org/10.1007/s00289-022-04465-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04465-y

Keywords

Navigation