Skip to main content
Log in

Eutectic solvents containing Al-compounds: new benign alternatives to BF3 co-initiator in producing low viscosity polyalphaolefin oils

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

As being a hazardous and corrosive co-initiator in α-olefin oligomerization, replacement of AlCl3 with other Al-based compounds or with an environmentally friendly deep eutectic solvent (DES) was assessed. To synthetize DES, first, a 1:1.5 molar ratio mixture of glucose and urea was reacted with an equimolar mixture of ZnCl2 and distilled water. The as-synthesized DES was employed along with Al-containing precursors, AlEt3, AlEt2Cl, AlCl3, et al./DES = 2 molar ratio, in 1-decene oligomerizations to poly(α-olefin) (PAO) oils. The as-prepared PAOs were fully characterized to shed light on their microstructure and flow properties. It was found that AlEt2Cl and AlEt3, in neat from and along with DES, render low molecular weight oligomers with low KV100 (3.6–4.1 cSt). NMR results indicated that PAOs from AlEt3-DES, AlEt2Cl-DES exhibited similar amount of short chain branching (58.9 and 62.3%) compared to that obtained from the neat AlCl3 co-initiator (58.5%). The overall results affirmed that employing DES as the main ingredient of the initiating system based on AlEt2Cl and AlEt3 compounds not only provides more environmentally benign protocol by decreasing the need for hazardous and corrosive Al compound, but also it favors production of low viscosity PAOs, with KV100 ~ 4 cSt, that constitute the highest share of PAO market. These systems can be outstanding alternatives to commercially employed BF3 co-initiator.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.

Similar content being viewed by others

References

  1. Chen S, Wu T, Zhao C (2020) Conversion of lipid into high-viscosity branched bio-lubricant base oil. Green Chem 22(21):7348–7354. https://doi.org/10.1039/D0GC01338B

    Article  CAS  Google Scholar 

  2. Wang L, Wu H, Zhang D, Dong G, Xu X, Xie Y (2018) Synthesis of a novel borate ester containing a phenylboronic group and its tribological properties as an additive in PAO 6 base oil. Tribology Int 121:21–29. https://doi.org/10.1016/j.triboint.2018.01.033

    Article  CAS  Google Scholar 

  3. Hanifpour A, Bahri-Laleh N, Mirmohammadi SA (2019) Silica-grafted poly1-hexene: a new approach to prepare polyethylene/silica nanocomposites. Polym Compos 40(3):1053–1060. https://doi.org/10.1002/pc.24795

    Article  CAS  Google Scholar 

  4. Abazari M, Jamjah R, Bahri-Laleh N (2021) Synthesis and evaluation of a new three-metallic high-performance Ziegler-Natta catalyst for ethylene polymerization: experimental and computational studies. Polym Bull. https://doi.org/10.1007/s00289-021-03848-x

    Article  Google Scholar 

  5. Biresaw G (2018) BiobasedPolyalphaolefin base oil: chemical, physical, and tribological properties. Tribology Lett 66(2):1–16. https://doi.org/10.1007/s11249-018-1027-9

    Article  CAS  Google Scholar 

  6. Bahri-Laleh N, Hanifpour A, Mirmohammadi SA, Poater A, Nekoomanesh-Haghighi M, Talarico G, Cavallo L (2018) Computational modeling of heterogeneous Ziegler-Natta catalysts for olefins polymerization. Prog Polym Sci 84:89–114. https://doi.org/10.1016/j.progpolymsci.2018.06.005

    Article  CAS  Google Scholar 

  7. Zhang Q, Wu B, Song R, Song H, Zhang J, Hu X (2020) Preparation, characterization and tribological properties of polyalphaolefin with magnetic reduced graphene oxide/Fe3O4. Tribology Int 141:105952. https://doi.org/10.1016/j.triboint.2019.105952

    Article  CAS  Google Scholar 

  8. Dehghani S, Hanifpour A, Nekoomanesh-Haghighi M, Sadjadi S, Mirmohammadi SA, Farhadi A, Bahri-Laleh N (2020) Highly efficient supported AlCl3-based cationic catalysts to produce polyα-olefin oil base stocks. J Appl Polym Sci 137(22):49018. https://doi.org/10.1002/app.49018

    Article  CAS  Google Scholar 

  9. Shao H, Gu X, Wang R, Wang X, Jiang T, Guo X (2020) Preparation of lubricant base stocks with high viscosity index through 1-decene oligomerization catalyzed by alkylaluminum chloride promoted by metal chloride. Ener Fuels 34(2):2214–2220. https://doi.org/10.1021/acs.energyfuels.9b04104

    Article  CAS  Google Scholar 

  10. Rezaeian A, Hanifpour A, Teimoury HR, Ahmadi M, Bahri-Laleh N (2022) Synthesis of highly spherical Ziegler-Natta catalyst by employing Span 80 as an emulsifier suitable for UHMWPE production. Polym Bull. https://doi.org/10.1007/s00289-022-04122-4

    Article  Google Scholar 

  11. Hanifpour A, Bahri-Laleh N, Nekoomanesh-Haghighi M, Poater A (2020) Coordinative chain transfer polymerization of 1-decene in the presence of a Ti-based diamine bis (phenolate) catalyst: A sustainable approach to produce low viscosity PAOs. Green Chem 22(14):4617–4626. https://doi.org/10.1039/D0GC00439A

    Article  CAS  Google Scholar 

  12. Hanifpour A, Bahri-Laleh N, Nekoomanesh-Haghighi M, Poater A (2020) Group IV diamine bis (phenolate) catalysts for 1-decene oligomerization. Mol Catal 493:111047. https://doi.org/10.1016/j.mcat.2020.111047

    Article  CAS  Google Scholar 

  13. Jalali A, Nekoomanehs-Haghighi M, Dehghani S, Bahri-Laleh N (2020) Effect of metal type on the metallocene-catalyzed oligomerization of 1-hexene and 1-octene to produce polyα-olefin-based synthetic lubricants. Appl Organometallic Chem 34(2):e5338. https://doi.org/10.1002/aoc.5338

    Article  CAS  Google Scholar 

  14. Baek JW, Hyun YB, Lee HJ, Lee JC, Bae SM, Seo YH, Lee DG, Lee BY (2020) Selective trimerization of α-Olefins with immobilized chromium catalyst for lubricant base oils. Catalysts 10(9):990. https://doi.org/10.3390/catal10090990

    Article  CAS  Google Scholar 

  15. Hogg JM, Coleman F, Ferrer-Ugalde A, Atkins MP, Swadźba-Kwaśny M (2015) Liquid coordination complexes: a new class of Lewis acids as safer alternatives to BF 3 in synthesis of polyalphaolefins. Green Chem 17(3):1831–1841. https://doi.org/10.1039/C4GC02080D

    Article  CAS  Google Scholar 

  16. Hogg JM, Ferrer-Ugalde A, Coleman F, Swadźba-Kwaśny M (2019) Borenium ionic liquids as alternative to BF3 in polyalphaolefins (PAOs) synthesis. ACS Sustain Chem Eng 7(17):15044–15052. https://doi.org/10.1021/acssuschemeng.9b03621.

  17. Hong-Liang H, Tong L, Li-Li M, Jian W, Li-Bo W, Si-Han W (2017) Characterization of polymerization of 1-decene and apparent kinetics catalyzed by boron trifluoride/alcohol system, China Petroleum Process. Petrochem Tech 19(3):16–22. http://www.chinarefining.com/EN/Y2017/V19/I3/16.

  18. Hanifpour A, HashemzadehGargari M, RostamiDarounkola MR, Kalantari Z, Bahri-Laleh N (2021) Kinetic and microstructural studies of Cp2ZrCl2 and Cp2HfCl2-catalyzed oligomerization of higher α-olefins in mPAO oil base stocks production. Polyolefins J 8(1):31–40, https://doi.org/10.22063/poj.2020.2802.1170.

  19. Ritter TH, Alt HG (2020) Halogen substituted iron (III) di (imino) pyridine complexes as catalysts for 1-pentene/1-hexene co-oligomerization reactions. Polyolefins J 7(2):79–89. https://doi.org/10.22063/poj.2020.2718.1159.

  20. Faujdar E, Negi H, Kukrety A (2021) Study of alkyl acrylate-co-maleic anhydride-based novel amide copolymers as multifunctional lubricant additives. Polym Bull 78:2085–2102

    Article  CAS  Google Scholar 

  21. Teimuri-Mofrad R, Gholamhosseini-Nazari M, Payami E, Esmati S (2018) Ferrocene-tagged ionic liquid stabilized on silica-coated magnetic nanoparticles: Efficient catalyst for the synthesis of 2-amino-3-cyano-4H-pyran derivatives under solvent-free conditions. Appl Organomet Chem 32(1):e3955. https://doi.org/10.1002/aoc.3955

    Article  CAS  Google Scholar 

  22. Rafiee E, Kahrizi M (2016) Mechanistic investigation of Heck reaction catalyzed by new catalytic system composed of Fe3O4@ OA–Pd and ionic liquids as co-catalyst. J Mol Liq 218:625–631. https://doi.org/10.1016/j.molliq.2016.02.055

    Article  CAS  Google Scholar 

  23. Abo-Hamad A, AlSaadi MA, Hayyan M, Juneidi I, Hashim MA (2016) Ionic liquid-carbon nanomaterial hybrids for electrochemical sensor applications: a review. Electrochim Acta 193:321–343. https://doi.org/10.1016/j.electacta.2016.02.044

    Article  CAS  Google Scholar 

  24. Joseph A, Mathew S (2021) Electronic properties of PVP-ionic liquid composite: spectroscopic and DFT-based thermochemical studies on the effect of anions. Iran Polym J 30(5):505–512. https://doi.org/10.1007/s13726-021-00908-x

    Article  CAS  Google Scholar 

  25. Ullah F, Javed F, Akil HM (2020) Graphene-filled versus ionic liquid-filled poly (vinylidene fluoride-co-hexafluoropropene) electrolytic membranes for high energy devices: thermophysical and electrochemical aspects, Iran. Polym J 29(1):1–11. https://doi.org/10.1007/s13726-019-00769-5.

  26. Sadjadi S (2021) Magnetic (poly) ionic liquids: a promising platform for green chemistry. J Mol Liq 323:114994. https://doi.org/10.1016/j.molliq.2020.114994

    Article  CAS  Google Scholar 

  27. Rajabi F, Luque R (2020) Highly ordered mesoporous functionalized pyridiniumprotic ionic liquids framework as efficient system in esterification reactions for biofuels production. Mol Catal 498:111238. https://doi.org/10.1016/j.mcat.2020.111238

    Article  CAS  Google Scholar 

  28. Phan HB, Nguyen QBT, Luong CM, Tran KN, Tran PH (2021) A green and highly efficient synthesis of 5-hydroxymethylfurfural from monosaccharides using a novel binary ionic liquid mixture. Mol Catal 503:111428. https://doi.org/10.1016/j.mcat.2021.111428

    Article  CAS  Google Scholar 

  29. Tabrizi M, Bahri-Laleh N, Sadjadi S, Nekoomanesh-Haghighi M (2021) The effect of ionic liquid containing AlCl3 catalytic systems on the microstructure and properties of polyalphaolefin based lubricants. J Mol Liq 335:116299. https://doi.org/10.1016/j.molliq.2021.116299

    Article  CAS  Google Scholar 

  30. Abbott AP, Capper G, Davies DL, Munro HL, Rasheed RK, Tambyrajah V (2001) Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chainsElectronic supplementary information (ESI) available: plot of conductivity vs. temperature for the ionic liquid formed from zinc chloride and choline chloride (2∶ 1). Chem Commun 19:2010–2011. https://doi.org/10.1039/B106357J.

  31. Sitze MS, Schreiter ER, Patterson EV, Freeman RG (2001) Ionic liquids based on FeCl3 and FeCl2. Raman scattering and ab initio calculations. Inorganic Chem 40(10):2298–2304. https://doi.org/10.1021/ic001042r.

  32. Soto-Figueroa C, Galicia-García T, del Rosario Rodríguez-Hidalgo M, Vicente L (2022) Micellar shuttle of a polymeric ionic liquid (P(EHO)-CI-P(EtOx)) in a water/ethyl acetate two-phase system: micellar load capacity and selective transfer of molecular anions. Eur Polym J 165:111007. https://doi.org/10.1016/j.eurpolymj.2022.111007.

  33. Lin IJ, Vasam CS (2005) Metal-containing ionic liquids and ionic liquid crystals based on imidazolium moiety. J Organomet Chem 690(15):3498–3512. https://doi.org/10.1016/j.jorganchem.2005.03.007

    Article  CAS  Google Scholar 

  34. Wilkes JS (2002) A short history of ionic liquids—from molten salts to neoteric solvents. Green Chem 4(2):73–80. https://doi.org/10.1039/B110838G

    Article  CAS  Google Scholar 

  35. Rothe R, Antonietti M, Fechler N (2017) The bakery of high-end sorption carbons: sugar–urea doughs as processable precursors for functional carbons. J Material Chem A 5(31):16352–16358. https://doi.org/10.1039/C7TA02052J

    Article  CAS  Google Scholar 

  36. Sadjadi S, Bahri-Laleh N, Nekoomanesh-Haghighi M, Ziaee F, Dehghani S, Shirbakht S, Rahbar A, Barough MS, Mirmohammadi SA (2019) Rationalizing chain microstructure in the polyα-olefins synthesized by cationic AlCl3/H2O catalytic system. Int J Polym Anal Character. https://doi.org/10.1080/1023666X.2019.1627027

    Article  Google Scholar 

  37. Ding H, Zhang B, Liu J (2009) Study on preparation process of lubrication from 1-decene with acidic ionic liquid catalyst. Petroleum Sci Technol 27(17):1919–1925. https://doi.org/10.1080/10916460802653962

    Article  CAS  Google Scholar 

  38. Mashayekhi M, Talebi S, Sadjadi S, Bahri-Laleh N (2021) Production of polyalfaolefin-based lubricants using new (poly) ionic liquid/AlCl3 catalysts as environmentally friendly alternatives to commercial AlCl3 route. Appl Catal A Gen 623:118274. https://doi.org/10.1016/j.apcata.2021.118274

    Article  CAS  Google Scholar 

  39. Guseinova G, Samedova F, Shabalina T (2010) Production of white oil bases by hydrogenation of olefin oligomers. Chem Technol Fuels Oils 46(1):25–30. https://doi.org/10.1007/s10553-010-0179-6

    Article  CAS  Google Scholar 

  40. Hanifpour A, Bahri-Laleh N, Nekoomanesh-Haghighi M, Karimi M (2016) Study on unsaturated structure and tacticity of poly1-hexene and new copolymer of 1-hexene/5-hexene-1-ol prepared by metallocene catalyst. J Organomet Chem 819:103–108. https://doi.org/10.1016/j.jorganchem.2016.06.028

    Article  CAS  Google Scholar 

  41. Asakura T, Demura M, Nishiyama Y (1991) Carbon-13 NMR spectral assignment of five polyolefins determined from the chemical shift calculation and the polymerization mechanism. Macromolecules 24(9):2334–2340. https://doi.org/10.1021/ma00009a033

    Article  CAS  Google Scholar 

  42. Verdier S, Coutinho JA, Silva AM, Alkilde OF, Hansen JA (2009) A critical approach to viscosity index. Fuel 88(11):2199–2206. https://doi.org/10.1016/j.fuel.2009.05.016

    Article  CAS  Google Scholar 

  43. Dong SQ, Mi PK, Xu S, Zhang J, Zhao RD (2019) Preparation and characterization of single-component poly-α-olefin oil base stocks. Ener Fuels 33(10):9796–9804. https://doi.org/10.1021/acs.energyfuels.9b02938

    Article  CAS  Google Scholar 

  44. Ghosh R, Bandyopadhyay AR, Jasra R, Milan Gagjibhai M (2014) Mechanistic study of the oligomerization of olefins. Ind Eng Chem Res 53:7622–7628

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Center for International Scientific Studies & Collaboration (CISSC), Ministry of Science Research and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samahe Sadjadi, Mostafa Ahmadi or Naeimeh Bahri-Laleh.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 646 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izadi, Z., Nekoomanesh-Haghighi, M., Sadjadi, S. et al. Eutectic solvents containing Al-compounds: new benign alternatives to BF3 co-initiator in producing low viscosity polyalphaolefin oils. Polym. Bull. 80, 7847–7863 (2023). https://doi.org/10.1007/s00289-022-04435-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04435-4

Keywords

Navigation