Skip to main content
Log in

Antibacterial activity induction into superabsorbent hydrogel via Schiff-base-metal coordination modification

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

As commercial superabsorbent polymer (SAP) hydrogels do not possess antimicrobial activity, the bioactivity induction is a research target to increase their diverse benefits, particularly, in their bio-applications. This work reports a facile and nearly quantitative synthesis of a novel partially bio-based Schiff base modifier (an imine-amine modifying agent based on furfural) under catalyst-free and solvent-free conditions. The modifier was identified by FTIR, 1H- and 13C-NMR spectroscopies. Then, a commercial SAP was feasibly surface modified by the modifier via a facile transamidation process followed by additional modification with copper (II) acetate to form Cu-coordination complex on the gel network (Ai: intact SAP, A1: modified with Schiff base, A2: modified with coordination complex, and A3: modified with copper (II) acetate). The modification reactions were confirmed morphologically and rheologically. The free-swelling measurements in deionized water and saline media revealed that the super absorbency was well-preserved after the modification. The saline-absorbency under load (AUL, 0.3 psi) tests verified that the modified samples owned 5–17% higher AUL compared to the unmodified sample. Antibacterial measurements against two bacterial strains (S. aureus and E. coli) proved that the metal complex formation significantly induces antibacterial activity comparing to both the intact and the metal-free Schiff-base-treated SAPs. The feasible processes and/or modified products may be considered for being used in bio-medical applications such as surgical pads and wound dressings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zohuriaan-Mehr MJ, Omidian H, Doroudiani S, Kabiri K (2010) Advances in non-hygienic applications of superabsorbent hydrogel materials. J Mater Sci 45:5711–5735. https://doi.org/10.1007/s10853-010-4780-1

    Article  CAS  Google Scholar 

  2. Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17:451–477

    CAS  Google Scholar 

  3. Po R (1994) Water-absorbent polymers: a patent survey. J Macromol Sci Rev Macromol Chem Phys C34:607–662. https://doi.org/10.1080/15321799408014168

    Article  CAS  Google Scholar 

  4. Ullah F, Othman MBH, Javed F et al (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng C 57:414–433. https://doi.org/10.1016/j.msec.2015.07.053

    Article  CAS  Google Scholar 

  5. Wahid F, Zhong C, Wang HS et al (2017) Recent advances in antimicrobial hydrogels containing metal ions and metals/metal oxide nanoparticles. Polymers (Basel). https://doi.org/10.3390/polym9120636

    Article  PubMed  Google Scholar 

  6. Moini N, Kabiri K, Zohuriaan-Mehr MJ (2016) Practical improvement of SAP hydrogel properties via facile tunable cross-linking of the particles surface. Polym Plast Technol Eng 55:278–290. https://doi.org/10.1080/03602559.2015.1070873

    Article  CAS  Google Scholar 

  7. Sumrra SH, Ibrahim M, Ambreen S et al (2014) Synthesis, spectral characterization, and biological evaluation of transition metal complexes of bidentate N, O donor Schiff bases. Bioinorg Chem Appl. https://doi.org/10.1155/2014/812924

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fathima SSA, Meeran MMS, Nagarajan ER (2020) Synthesis, characterization and biological evaluation of novel 2,2′-((1,2-diphenylethane-1,2-diylidene)bis(azanylylidene))bis(pyridin-3-ol)and metal complexes: molecular docking and in silico ADMET profile. Struct Chem 31:521–539. https://doi.org/10.1007/s11224-019-01425-7

    Article  CAS  Google Scholar 

  9. Canpolat E, Kaya M (2005) Studies on mononuclear chelates derived from substituted Schiff-base ligands (part 7): synthesis and characterization of a new naphthyliden-p- aminoacetophenoneoxime and its complexes with Co(II), Ni(II), Cu(II) and Zn(II). J Coord Chem 58:1063–1069. https://doi.org/10.1080/00958970500122565

    Article  CAS  Google Scholar 

  10. Spinu C, Kriza A (2000) Co(II), Ni(II) and Cu(II) complexes of bidentate Schiff bases. Acta Chim Slov 47:179–185

    CAS  Google Scholar 

  11. Agarwal R, Sharma D, Singh L, Agarwal H (2006) Synthesis, biological, spectral, and thermal investigations of cobalt(II) and nickel(II) complexes of N-isonicotinamido- 2′, 4′- dichlorobenzalaldimine. Bioinorg Chem Appl 2006:1–9. https://doi.org/10.1155/BCA/2006/29234

    Article  CAS  Google Scholar 

  12. Sekhar CM (2018) Synthesis and characterization of metal complexes of a N-(Furan-2-Ylmethylidene)- pyrazine-2-carboxamide Schiff base. Int Res J Pharm 9:140–143. https://doi.org/10.7897/2230-8407.097139

    Article  CAS  Google Scholar 

  13. Ali OAM, El-Medani SM, Abu Serea MR, Sayed ASS (2015) Unsymmetrical Schiff base (ON) ligand on complexation with some transition metal ions: Synthesis, spectral characterization, antibacterial, fluorescence and thermal studies. Spectrochim Acta - Part A Mol Biomol Spectrosc 136:651–660. https://doi.org/10.1016/j.saa.2014.09.079

    Article  CAS  Google Scholar 

  14. Hanan MMO, El FA, Eman H (2017) Synthesis , characterization , and biological and anticancer studies of mixed ligand complexes with Schiff base and 2 , 2 ′‐ bipyridine. 1–11. https://doi.org/10.1002/aoc.3724

  15. Reiss A, Florea S, Cǎproiu T, Stǎnicǎ N (2009) Synthesis, characterization, and antibacterial activity of some transition metals with the Schiff base N-(2-furanylmethylene)-3-aminodibenzofuran. Turkish J Chem 33:775–783. https://doi.org/10.3906/kim-0807-31

    Article  CAS  Google Scholar 

  16. Singh RV (1986) Synthesis and characterization of sulfonaride schiff base complexes of germanium tetrachloride. Synth React Inorg Met Chem 16:21–31. https://doi.org/10.1080/00945718608055907

    Article  CAS  Google Scholar 

  17. Del Prete S, Vullo D, Di Fonzo P et al (2017) Sulfonamide inhibition profile of the γ-carbonic anhydrase identified in the genome of the pathogenic bacterium Burkholderia pseudomallei the etiological agent responsible of melioidosis. Bioorganic Med Chem Lett 27:490–495. https://doi.org/10.1016/j.bmcl.2016.12.035

    Article  CAS  Google Scholar 

  18. Murali Mohan Y, Lee K, Premkumar T, Geckeler KE (2007) Hydrogel networks as nanoreactors: A novel approach to silver nanoparticles for antibacterial applications. Polymer (Guildf) 48:158–164. https://doi.org/10.1016/j.polymer.2006.10.045

    Article  CAS  Google Scholar 

  19. Jockusch S, Turro NJ, Mitsukami Y, Matsumoto M, Iwamura T, Lindner T, Flohr A, Massimo G (2008) Photoinduced Surface Crosslinking of Superabsorbent Polymer Particles. J Appl Polym Sci 111:2163–2170. https://doi.org/10.1002/app.29209

    Article  CAS  Google Scholar 

  20. Beyler Çiğil A, Şen F, Birtane H, Kahraman MV (2022) Covalently bonded nanosilver-hydroxyethyl cellulose/polyacrylic acid/sorbitol hybrid matrix: thermal, morphological and antibacterial properties. Polym Bull. https://doi.org/10.1007/s00289-022-04089-2

    Article  Google Scholar 

  21. Nguyen TV, Do TV, Ha MH et al (2020) Crosslinking process, mechanical and antibacterial properties of UV-curable acrylate/Fe3O4-Ag nanocomposite coating. Prog Org Coatings 139:105325. https://doi.org/10.1016/j.porgcoat.2019.105325

    Article  CAS  Google Scholar 

  22. Beyler-Çiğil A, Birtane H, Şen F, Kahraman MV (2021) Transparent and flexible antibacterial photocrosslinked thin films against the S. aureus and E. coli pathogen bacteria. Mater Today Commun 27:102463. https://doi.org/10.1016/j.mtcomm.2021.102463

  23. Kabiri ZPK, Mehr MJZ, Jahandideh NMA (2020) Preparation of antibacterial polyester–cotton absorbents; the effects of star-shaped functional oligomers. Polym Bull. https://doi.org/10.1007/s00289-020-03353-7

    Article  Google Scholar 

  24. Khan MA, Agarwal R, Ahmad S, College B (2013) Research Article Synthesis, structural characterization and biological activity of transition metal complexes of schiff base ligand-furan derivatives J Chem Pharm Res 5:1289–1296.

  25. Azizi A, Kabiri K, Zohuriaan-Mehr MJ et al (2018) Transamidation: A feasible approach of surface modification to improve absorbency under load of agricultural superabsorbent materials. J Mater Res 33:2327–2335. https://doi.org/10.1557/jmr.2018.240

    Article  CAS  Google Scholar 

  26. Dabbaghi A, Kabiri K, Ramazani A et al (2019) Synthesis of bio-based internal and external cross-linkers based on tannic acid for preparation of antibacterial superabsorbents. Polym Adv Technol 30:2894–2905. https://doi.org/10.1002/pat.4722

    Article  CAS  Google Scholar 

  27. Shahi S, Motasadizadeh HR, Zohuriaan-Mehr MJ (2017) Surface modification of superabsorbing hydrogels through a feasible esterification reaction: Toward tunable superabsorbent for hygienic applications. Int J Polym Mater Polym Biomater 66:544–557. https://doi.org/10.1080/00914037.2016.1252348

    Article  CAS  Google Scholar 

  28. Naderi P, Kabiri K, Jahanmardi R, Zohuriaan-Mehr MJ (2021) Preparation of itaconic acid bio-based cross-linkers for hydrogels. J Macromol Sci Part A Pure Appl Chem 58:165–174. https://doi.org/10.1080/10601325.2020.1836492

    Article  CAS  Google Scholar 

  29. Shahi S, Zohuriaan-Mehr MJ, Omidian H (2017) Antibacterial superabsorbing hydrogels with high saline-swelling properties without gel blockage: Toward ideal superabsorbents for hygienic applications. J Bioact Compat Polym 32:128–145. https://doi.org/10.1177/0883911516658782

    Article  CAS  Google Scholar 

  30. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal 6:71–79. https://doi.org/10.1016/j.jpha.2015.11.005

    Article  PubMed  Google Scholar 

  31. Moini N, Zohuriaan-Mehr MJ, Kabiri K, Khonakdar HA (2019) “Click” on SAP: Superabsorbent polymer surface modification via CuAAC reaction toward antibacterial activity and improved swollen gel strength. Appl Surf Sci 487:1131–1144. https://doi.org/10.1016/j.apsusc.2019.04.243

    Article  CAS  Google Scholar 

  32. Kakanejadifard A, Esna-ashari F, Hashemi P, Zabardasti A (2013) Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy Synthesis and characterization of an azo dibenzoic acid Schiff base and its Ni (II), Pb (II), Zn (II) and Cd (II) complexes. Spectrochim Acta A Mol Biomol Spectr 106:80–85. https://doi.org/10.1016/j.saa.2012.12.044

    Article  CAS  Google Scholar 

  33. Shakir M, Azam M, Azim Y et al (2007) Synthesis and physico-chemical studies on complexes of 1,2-diaminophenyl-N, N′-bis-(2-pyridinecarboxaldimine), (L): A spectroscopic approach on binding studies of DNA with the copper complex. Polyhedron 26:5513–5518. https://doi.org/10.1016/j.poly.2007.08.032

    Article  CAS  Google Scholar 

  34. Yousef Ebrahimipour S, Mague JT, Akbari A, Takjoo R (2012) Synthesis, characterization, crystal structure and thermal behavior of 4-Bromo-2-(((5-chloro-2-hydroxyphenyl)imino)methyl)phenol and its oxido-vanadium(V) complexes. J Mol Struct 1028:148–155. https://doi.org/10.1016/j.molstruc.2012.05.076

    Article  CAS  Google Scholar 

  35. Mondal J, Modak A, Dutta A et al (2012) One-pot thioetherification of aryl halides with thiourea and benzyl bromide in water catalyzed by Cu-grafted furfural imine-functionalized mesoporous SBA-15. Chem Commun 48:8000–8002. https://doi.org/10.1039/c2cc32676k

    Article  CAS  Google Scholar 

  36. Mondal J, Modak A, Dutta A, Bhaumik A (2011) Facile C-S coupling reaction of aryl iodide and thiophenol catalyzed by Cu-grafted furfural functionalized mesoporous organosilica. Dalt Trans 40:5228–5235. https://doi.org/10.1039/c0dt01771j

    Article  CAS  Google Scholar 

  37. Sadjadi S (2017) Efficient synthesis of xanthene derivatives in aqueous media in the presence of Cu-anchored furfural imine-functionalized halloysite. Iran J Catal 7(2):161–170

    CAS  Google Scholar 

  38. Al-Showiman SS, Al-Najjar IM, Al-Shalaan AM (1987) 1H and 13C NMR study on some N-alkylimines derived from furfural and 2-acetylfuran. Spectrochim Acta A, Molecular Spectr 43:1055–1058. https://www.sciencedirect.com/science/article/abs/pii/0584853987801782

  39. Alturiqi AS, Alaghaz ANMA, Ammar RA, Zayed ME (2018) Synthesis, Spectral Characterization, and Thermal and Cytotoxicity Studies of Cr(III), Ru(III), Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) Complexes of Schiff Base Derived from 5-Hydroxymethylfuran-2-carbaldehyde. J Chem 2018:5816906. https://doi.org/10.1155/2018/5816906

    Article  CAS  Google Scholar 

  40. Mohamed GG, Zayed MA, Abdallah SM (2010) Metal complexes of a novel Schiff base derived from sulphametrole and varelaldehyde. Synthesis, spectral, thermal characterization and biological activity. J Mol Struct 979:62–71. https://doi.org/10.1016/j.molstruc.2010.06.002

    Article  CAS  Google Scholar 

  41. Chaviara AT, Cox PJ, Repana KH et al (2004) Copper(II) Schiff base coordination compounds of dien with heterocyclic aldehydes and 2-amino-5-methyl-thiazole: Synthesis, characterization, antiproliferative and antibacterial studies. Crystal structure of CudienOOCl2. J Inorg Biochem 98:1271–1283. https://doi.org/10.1016/j.jinorgbio.2004.05.010

    Article  CAS  PubMed  Google Scholar 

  42. Moini N, Kabiri K, Zohuriaan-Mehr MJ et al (2017) Fine tuning of SAP properties via epoxy-silane surface modification. Polym Adv Technol 28:1132–1147. https://doi.org/10.1002/pat.4006

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Jalal Zohuriaan-Mehr.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 768 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadhashemi, Z., Zohuriaan-Mehr, M.J. & Jahanmardi, R. Antibacterial activity induction into superabsorbent hydrogel via Schiff-base-metal coordination modification. Polym. Bull. 80, 8045–8065 (2023). https://doi.org/10.1007/s00289-022-04434-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04434-5

Keywords

Navigation