Skip to main content

Advertisement

Log in

Desalination characteristics of new blend membranes based on sulfonated polybenzimidazole and sulfonated poly(arylene ether sulfone)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

A Correction to this article was published on 06 September 2022

This article has been updated

Abstract

In-house synthesized monosulfonated para-polybenzimidazole (s-p-PBI) was blended with commercially available disulfonated poly(arylene ether) sulfone (SPAES; SES0105, Aquafone™). The s-p-PBI was prepared from the polycondensation of 2-sulfoterepthalic acid and 3, 3ʹ-diaminobenzidine. The 1H NMR spectroscopy confirms the formation of benzimidazole protons. Copolymer SPAES behaves as the electron-withdrawing polymer (sulfonic groups), and s-p-PBI as the electron-donating polymer (imidazole groups). The interactions between polymers are examined through Attenuated Total Reflectance-Fourier Transformed Infrared spectroscopy (ATR-FTIR), Thermogravimetric Analysis (TGA), and Scanning Electron Microscopy (SEM). Tensile stress at maximum load of blend membrane containing 80% (w/w) of s-p-PBI and 20% (w/w) of SPAES (AM-AC-80) is 55.59 MPa, whereas pristine s-p-PBI (AM-AC-100) membrane is 45.35 MPa. The blend polymers were stable in boiling water. All the blend membranes were morphologically stable at 1500 ppm of NaOCl solution immersed for 24 h except for pristine s-p-PBI. The blend polymers showed improved tensile strength and stability in NaOCl solutions compared to pristine s-p-PBI. The blend membranes displayed improved salt rejection with decreasing water permeability. The intrinsic parameters for desalination performance were examined to correlate crosslinking with water and salt transport. AM-AC-80 shows a slight improvement in water diffusivity and a four-fold increase in permeability selectivity (water/NaCl) compared to pristine s-p-PBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. Chen D, Yu S, Zhang H, Li X (2015) Solvent resistant nanofiltration membrane based on polybenzimidazole. Sep Purif Technol 142:299–306. https://doi.org/10.1016/j.seppur.2015.01.011

    Article  CAS  Google Scholar 

  2. Mader JA, Benicewicz BC (2010) Sulfonated polybenzimidazoles for high temperature PEM fuel cells. Macromolecule 43:6705–6715. https://doi.org/10.1021/ma1009098

    Article  CAS  Google Scholar 

  3. Wang X, Jayaweera P, Alrasheed RA, Aljlil SA, Alyousef YM, Alsubaei M, Alromaih H, Jayaweera I (2018) Preparation of polybenzimidazole hollow-fiber membranes for reverse osmosis and nanofiltration by changing the spinning air gap. Membranes 8:113. https://doi.org/10.3390/membranes8040113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Borjigin H, Stevens KA, Liu R, Moon JD, Shaver AT, Swinnea S, Freeman BD, Riffle JS, McGrath JE (2015) Synthesis and characterization of polybenzimidazoles derived from tetraaminodiphenylsulfone for high temperature gas separation membranes. Polymer 71:135–142. https://doi.org/10.1016/j.polymer.2015.06.021

    Article  CAS  Google Scholar 

  5. Aiba M, Tokuyama T, Matsumoto H, Tomioka H, Higashihara T, Ueda M (2015) Effect of primary structure on permselectivity of ultrathin semipermeable polybenzimidazole membrane. J Appl Polym Sci 41531:1–7. https://doi.org/10.1002/app.41531

    Article  CAS  Google Scholar 

  6. Aiba M, Tokuyama T, Matsumoto H, Tomioka H, Higashihara T, Ueda M (2016) Semipermeable membranes based on polybenzimidazole: simultaneous improvement in water flux and salt rejection by facile crosslinking. Desalination 395:1–7. https://doi.org/10.1016/j.desal.2016.05.021

    Article  CAS  Google Scholar 

  7. Wang KY, Chung TS, Rajagopalan R (2007) Novel polybenzimidazole (PBI) nanofiltration membranes for the separation of sulfate and chromate from high alkalinity brine to facilitate the chlor-alkali process. Ind Eng Chem Res 46:1572–1577. https://doi.org/10.1021/ie061435j

    Article  CAS  Google Scholar 

  8. Daer S, Akther N, Wei Q, Shon HK, Hasan SW (2020) Influence of silica nanoparticles on the desalination performance of forward osmosis polybenzimidazole membranes. Desalination 49:114441. https://doi.org/10.1016/j.desal.2020.114441

    Article  CAS  Google Scholar 

  9. Valtcheva IB, Kumbharkar SC, Kim JF, Bhole Y, Livingston AG (2014) Beyond polyimide: Crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN) in harsh environments. J Memb Sci 457:62–72. https://doi.org/10.1016/j.memsci.2013.12.069

    Article  CAS  Google Scholar 

  10. Glater J, Hong SK, Elimelech M (1994) The search for a chlorine-resistant reverse osmosis membrane. Desalination 95(3):325–345. https://doi.org/10.1016/0011-9164(94)00068-9

    Article  CAS  Google Scholar 

  11. Verbeke R, Gómez V, Vankelecom IFJ (2017) Chlorine-resistance of reverse osmosis (RO) polyamide membranes. Prog Polym Sci 72:1–15. https://doi.org/10.1016/j.progpolymsci.2017.05.003

    Article  CAS  Google Scholar 

  12. Yi C, Wang Z, Li M, Wang J, Wang S (2006) Facilitated transport of CO2 through polyvinylamine/polyethlene glycol blend membranes. Desalination 193:90–96. https://doi.org/10.1016/j.desal.2005.04.139

    Article  CAS  Google Scholar 

  13. Won M, Kwon S, Kim TH (2015) High performance blend membranes based on sulfonated poly(arylene ether sulfone) and poly(p-benzimidazole) for PEMFC applications. J. Ind. Eng. Chem 29:104–111. https://doi.org/10.1016/j.jiec.2015.03.022

    Article  CAS  Google Scholar 

  14. Zhao C, Xue J, Ran F, Sun S (2013) Modification of polyethersulfone membranes-a review of methods. Prog Mater Sci 58:76–150. https://doi.org/10.1016/j.pmatsci.2012.07.002

    Article  CAS  Google Scholar 

  15. Kim YJ, Lee KS, Jeong MH, Lee JS (2011) Highly chlorine-resistant end-group crosslinked sulfonated-fluorinated poly(arylene ether) for reverse osmosis membrane. J Memb Sci 378:512–519. https://doi.org/10.1016/j.memsci.2011.05.040

    Article  CAS  Google Scholar 

  16. Lee CH, McCloskey BD, Cook J, Lane O, Xie W, Freeman BD, Lee YM, McGrath JE (2012) Disulfonated poly(arylene ether sulfone) random copolymer thin film composite membrane fabricated using a benign solvent for reverse osmosis applications. J Memb Sci 23:1039–1049. https://doi.org/10.1016/j.memsci.2011.11.001

    Article  CAS  Google Scholar 

  17. Xie W, Cook J, Park HB, Freeman BD, Lee CH, McGrath JE (2011) Fundamental salt and water transport properties in directly copolymerized disulfonated poly(arylene ether sulfone) random copolymers. Polymer 52:2032–2043. https://doi.org/10.1016/j.polymer.2011.02.006

    Article  CAS  Google Scholar 

  18. Feng S, Shang Y, Wang S, Xie X, Wang Y, Wang Y, Xu J (2010) Novel method for the preparation of ionically crosslinked sulfonated poly (arylene ether sulfone )/ polybenzimidazole composite membranes via in situ polymerization. J Memb Sci 346:105–112. https://doi.org/10.1016/j.memsci.2009.09.026

    Article  CAS  Google Scholar 

  19. Hong YT, Lee CH, Park HS, Min KA, Kim HJ, Nam SY, Lee YM (2008) Improvement of electrochemical performances of sulfonated poly(arylene ether sulfone) via incorporation of sulfonated poly(arylene ether benzimidazole). J Power Sour 175:724–731. https://doi.org/10.1016/j.jpowsour.2007.09.068

    Article  CAS  Google Scholar 

  20. Matindi CN, Hu M, Kadanyo S, Ly QV, Gumbi NN, Dlamini DS, Li J, Hu Y, Cui Z, Li J (2021) Tailoring the morphology of polyethersulfone/sulfonated polysulfone ultrafiltration membranes for highly efficient separation of oil-in-water emulsions using TiO2 nanoparticles. J Memb Sci 620:118868. https://doi.org/10.1016/j.memsci.2020.118868

    Article  CAS  Google Scholar 

  21. Bagheri A, Salarizadeh P, Hazer MSA, Hosseinabadi P, Kashefi S, Beydaghi H (2019) The effect of adding sulfonated SiO2 nanoparticles and polymer blending on properties and performance of sulfonated poly ether sulfone membrane: Fabrication and optimization. Electrochimica Acta 295:875–890. https://doi.org/10.1016/j.electacta.2018.10.197

    Article  CAS  Google Scholar 

  22. Xie W, Park HB, Cook J, Lee CH, Byun G, Freeman BD, McGrath JE (2010) Advances in membrane materials: Desalination membranes based on directly copolymerized disulfonated poly(arylene ether sulfone) random copolymers. Water Sci Technol 61:619–624. https://doi.org/10.2166/wst.2010.883

    Article  CAS  PubMed  Google Scholar 

  23. Zhang S, Guan S, Liu C, Wang Z, Wang D, Jian X (2019) Effect of chemical structure on the performance of sulfonated poly(aryl ether sulfone) composite nanofiltration membranes. Membranes 9(6):1–12. https://doi.org/10.3390/membranes9010006

    Article  CAS  Google Scholar 

  24. Roy S, Lane O, Kazerooni D, Narang GS, Soung E (2019) Synthesis and characterization of post-sulfonated poly ( arylene ether sulfone ) membranes for potential applications in water desalination Synthesis and characterization of post-sulfonated poly(arylene ether sulfone ) membranes for potential applicatio. Polymer 177:250–261. https://doi.org/10.1016/j.polymer.2019.05.075

    Article  CAS  Google Scholar 

  25. Liu Y, Yue X, Zhang S, Ren J, Yang L, Wang Q, Wang G (2012) Synthesis of sulfonated polyphenylsulfone as candidates for antifouling ultrafiltration membrane. Sep Purif Technol 98:298–307. https://doi.org/10.1016/j.seppur.2012.06.031

    Article  CAS  Google Scholar 

  26. Di Vona ML, Sgreccia E, Tamilvanan M, Khadhraoui M, Chassigneux C, Knauth P (2010) High ionic exchange capacity polyphenylsulfone (SPPSU) and polyethersulfone (SPES) crosslinked by annealing treatment: thermal stability, hydration level and mechanical properties. J Memb Sci 354:134–141. https://doi.org/10.1016/j.memsci.2010.02.058

    Article  CAS  Google Scholar 

  27. Hasiotis C, Deimede V, Kontoyannis C (2001) New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole. Electrochimica Acta 46(15):2401–2406. https://doi.org/10.1016/S0013-4686(01)00437-6

    Article  CAS  Google Scholar 

  28. Asadi Tashvigh A, Luo L, Chung TS, Weber M, Maletzko C (2018) Performance enhancement in organic solvent nanofiltration by double crosslinking technique using sulfonated polyphenylsulfone (sPPSU) and polybenzimidazole (PBI). J Memb Sci 551:204–213. https://doi.org/10.1016/j.memsci.2018.01.047

    Article  CAS  Google Scholar 

  29. Thomas OD, Peckham TJ, Thanganathan U, Yang Y, Holdcroft S (2010) Sulfonated polybenzimidazoles: proton conduction and acid-base crosslinking. J Polym Sci Part A Polym Chem 48:3640–3650. https://doi.org/10.1002/pola.24147

    Article  CAS  Google Scholar 

  30. Geise GM, Paul DR, Freeman BD (2014) Fundamental water and salt transport properties of polymeric materials. Prog Polym Sci 39:1–42. https://doi.org/10.1016/j.progpolymsci.2013.07.001

    Article  CAS  Google Scholar 

  31. Krishnan NN, Lee HJ, Kim HJ, Kim JY, Hwang I, Jang JH, Cho EA, Kim SK, Henkensmeier D, Hong SA, Lim TH (2010) Sulfonated poly(ether sulfone)/sulfonated polybenzimidazole blend membrane for fuel cell applications. Eur Polym J 46:1633–1641. https://doi.org/10.1016/j.eurpolymj.2010.03.005

    Article  CAS  Google Scholar 

  32. Bai H, Ho WW (2009) New carbon dioxide-selective membranes based on sulfonated polybenzimidazole (SPBI) copolymer matrix for fuel cell applications. Ind Eng Chem Res 48(5):2344–2354. https://doi.org/10.1021/ie800507r

    Article  CAS  Google Scholar 

  33. Valtcheva IB, Kumbharkar SC, Kim JF, Bhole Y, Livingston AG (2014) Beyond polyimide: crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN) in harsh environments. J Membr Sci 457:62–72. https://doi.org/10.1016/j.memsci.2013.12.069

    Article  CAS  Google Scholar 

  34. Pan H, Chen S, Jin M, Chang Z, Pu H (2017) Preparation and properties of sulfonated polybenzimidazole-polyimide block copolymers as electrolyte membranes. Ionics 24:6861. https://doi.org/10.1007/s11581-017-2341-1

    Article  CAS  Google Scholar 

  35. Han J, Kim K, Kim J, Kim S, Choi SW, Lee H, Kim JJ, Kim TH, Sung YE, Lee JC (2019) Cross-linked highly sulfonated poly(arylene ether sulfone) membranes prepared by in-situ casting and thiol-ene click reaction for fuel cell application. J Membr Sci 1(579):70–8. https://doi.org/10.1016/j.memsci.2019.02.048

    Article  CAS  Google Scholar 

  36. Ismail AF, Khuble KC, Matsuura T (2019) RO Membrane Preparation (ed) Reverse Osmosis pp.25–56 https://doi.org/10.1016/B978-0-12-811468-1.00002-5

  37. Wienk IM, Boom RM, Beerlage MAM, Bulte AMW, Smolders CA, Strathmann H (1996) Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers. J Membr Sci 113(2):361–371. https://doi.org/10.1016/0376-7388(95)00256-1

    Article  CAS  Google Scholar 

  38. Franceschini EA, Corti HR (2009) Elastic properties of Nafion, polybenzimidazole and poly [2,5-benzimidazole] membranes determined by AFM tip nano-indentation. J Power Sources 188:379–386. https://doi.org/10.1016/j.jpowsour.2008.12.019

    Article  CAS  Google Scholar 

  39. Feng P, Liu Z, Liu S, Li X, Hu W, Jiang Z, Liu B (2013) Novel sulfonated poly(ether ether ketone)/polybenzimidazole blends for proton exchange membranes, High Perform. Polym 25:697–704. https://doi.org/10.1177/0954008313482956

    Article  CAS  Google Scholar 

  40. Wang S, Zhang G, Han M, Li H, Zhang Y, Ni J, Ma W, Li M, Wang J, Liu Z, Zhang L, Na H (2011) Novel epoxy-based crosslinked polybenzimidazole for high temperature proton exchange membrane fuel cells. Int J Hydrogen Energy 36:8412–8421. https://doi.org/10.1016/j.ijhydene.2011.03.147

    Article  CAS  Google Scholar 

  41. Geise GM, Lee HS, Miller DJ, Freeman BD, McGrath JE, Paul DR (2010) Water purification by membranes: the role of polymer science. J Polym Sci Part B Polym Phys 48:1685–1718. https://doi.org/10.1002/polb.22037

    Article  CAS  Google Scholar 

  42. Mohan S, Sundaraganesan N, Mink J (1991) FTIR and Raman studies on benzimidazole. Spectrochim Acta Part A Mol Spectrosc 47:1111–1115. https://doi.org/10.1016/0584-8539(91)80042-H

    Article  Google Scholar 

  43. Hu L, You M, Meng J (2021) Chlorination as a simple but effective method to improve the water / salt selectivity of polybenzimidazole for desalination membrane applications. J Memb Sci 638:119745. https://doi.org/10.1016/j.memsci.2021.119745

    Article  CAS  Google Scholar 

  44. Park HB, Freeman BD, Zhang Z-B, Sankir M, McGrath JE (2008) Highly Chlorine-Tolerant Polymers for Desalination. Angew Chemie 120:6108–6113. https://doi.org/10.1002/ange.200800454

    Article  Google Scholar 

  45. Afonso MD, de Pinho MN (2000) Transport of MgSO4, MgCl2, and Na2SO4 across an amphoteric nanofiltration membrane. J Membr Sci 179(1–2):137–154. https://doi.org/10.1016/S0376-7388(00)00495-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would gratefully acknowledge Dr. Santanu Karan, Senior Scientist from the Council of Scientific and Industrial Research-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI) Bhavnagar (India), for conducting desalination measurements for our synthesized and casted membranes in his laboratory.

Funding

This work was funded by the Department of Science of Technology-Science and Engineering Research Board (DST-SERB), Government of India [Grant number ECR/2015/000014].

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection, characterization, and analysis were performed by KR Venkatachalam and SGM Balasundaram. The first draft of the manuscript was written by KR Venkatachalam. JN Krishnan performed early conception and approved the final manuscript.

Corresponding author

Correspondence to Jegatha Nambi Nambi Krishnan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatachalam, K.R., Gautham, S.M.B. & Nambi Krishnan, J.N. Desalination characteristics of new blend membranes based on sulfonated polybenzimidazole and sulfonated poly(arylene ether sulfone). Polym. Bull. 80, 7805–7824 (2023). https://doi.org/10.1007/s00289-022-04428-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04428-3

Keywords

Navigation