Skip to main content
Log in

Development and evaluation of reservoir transdermal polymeric patches for controlled delivery of diclofenac sodium

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The purpose of the study was to prepare a reservoir-controlled transdermal drug delivery patches containing a diclofenac sodium (DS) as a model drug to achieve a controlled release transdermal drug delivery system. DS-loaded patches were prepared by solvent casting technique using polyvinyl alcohol (5%) as backing membrane, drug, HPMC K100, propylene glycol (3%), and permeation enhancers (oleic acid, DMSO, and Tween 80) were employed in drug reservoir layer. Eudragit RS100 was used to prepare a rate-controlled membrane, which was casting over the drug reservoir layer. Formulated patches were evaluated for physicochemical properties, organoleptic characters, weight variation, thickness, flatness, folding endurance, tensile strength, swelling index, percentage erosion, moisture content uptake, water vapor transmission rate, content uniformity, Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and skin irritation test. In vitro dissolution and ex vivo permeation studies were evaluated in phosphate buffer saline (pH 7.4). A skin irritation test confirmed that no allergic reaction or erythema was detected on rat skin after application for 24 h. The effect of permeation enhancers was elucidated on artificial human skin on Franz diffusion cell. Formulation F7 (DMSO) was optimized to achieve controlled drug release (92.14%) and high flux value (567.49 µg/cm2 h). Optimized formulation (F7) follows zero-order kinetics (0.9753) with non-Fickian diffusion (0.949). The curve shape of formulations (F1–F8) was sigmoidal with turning, while F9 and F10 show steeper shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmed A, Karki N, Charde R, Charde M, Gandhare B (2011) Transdermal drug delivery systems: an overview. Int J Biomed Adv Res 2(1):38–56

    Article  Google Scholar 

  2. Patel D, Chaudhary SA, Parmar B, Bhura N (2012) Transdermal drug delivery system: a review. Pharma Innov 1(4):66–75

    CAS  Google Scholar 

  3. Ansari K, Singhai A, Saraogi GKJIJPS (2011) Recent advancement in transdermal drug delivery system. Indian J Pharm Sci 3(5):52–59

    CAS  Google Scholar 

  4. Jaydatt J, Sreenivas S (2013) Formulation and in vitro evaluation of drug reservoir transdermal patches of piroxicam using polymers HPMC E15, PVP K30 and Eudragit L-100. Int J Pharm 3(5):67–80

    Google Scholar 

  5. Paudel R, Deka A, Gupta HK, Nepal HP (2017) Comparative evaluation of analgesic efficacy of tramadol and diclofenac-sodium in post-operative orthopedic patients. Int J Basic Clin Pharmacol 6(11):2676

    Article  Google Scholar 

  6. McCarberg B, Argoff C (2010) Topical diclofenac epolamine patch 1.3% for treatment of acute pain caused by soft tissue injury. Int J Clin Pract 64(11):1546–1553

    Article  CAS  PubMed  Google Scholar 

  7. Farooq M, Shoaib MH, Yousuf RI, Qazi F, Hanif M (2019) Development of extended release loxoprofen sodium multiparticulates using different hydrophobic polymers. Polym Bull 76(5):2537–2558

    Article  CAS  Google Scholar 

  8. Baviskar DT, Parik VB, Jain DJ (2013) Development of matrix-type transdermal delivery of lornoxicam: in vitro evaluation and pharmacodynamic and pharmacokinetic studies in albino rats. PDA J Pharm Sci Technol 67(1):9–22

    Article  CAS  PubMed  Google Scholar 

  9. Aung NN, Ngawhirunpat T, Rojanarata T, Patrojanasophon P, Opanasopit P, Pamornpathomkul B (2020) HPMC/PVP dissolving microneedles: a promising delivery platform to promote trans-epidermal delivery of alpha-arbutin for skin lightening. AAPS PharmSciTech 21(1):1–13. https://doi.org/10.1208/s12249-019-1599-1

    Article  CAS  Google Scholar 

  10. Jafri I, Shoaib MH, Yousuf RI, Ali FR (2019) Effect of permeation enhancers on in vitro release and transdermal delivery of lamotrigine from Eudragit® RS100 polymer matrix-type drug in adhesive patches. Prog Biomater 8(2):91–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shabbir M, Ali S, Farooq M, Adnan S, Yousaf M, Idrees A, Rehman K, Shahid N (2016) Formulation factors affecting in vitro and ex vivo permeation of bisoprolol fumarate from a matrix transdermal patch. Adv Polym Technol 35(3):237–247

    Article  CAS  Google Scholar 

  12. Gaikwad AK (2013) Transdermal drug delivery system: formulation aspects and evaluation. Compreh J Pharm Sci 1(1):1–10

    Google Scholar 

  13. Kavitha K, Rajendra MM (2011) Design and evaluation of transdermal films of lornoxicam. Int J Pharm Bio Sci 2(2):54–62

    CAS  Google Scholar 

  14. Garala KC, Shinde AJ, Shah PH (2009) Formulation and in-vitro characterization of monolithic matrix transdermal systems using HPMC/Eudragit S 100 polymer blends. Int J Pharm Pharm Sci 1(1):108–120

    CAS  Google Scholar 

  15. Gairola A, Chaurasia U, Singh A, Saharan VA (2014) Development and evaluation of transdermal patches of aceclofenac. Thai J Pharm Sci 38(2):90–97

    CAS  Google Scholar 

  16. Pichayakorn W, Suksaeree J, Boonme P, Amnuaikit T, Taweepreda W, Ritthidej GC (2012) Nicotine transdermal patches using polymeric natural rubber as the matrix controlling system: effect of polymer and plasticizer blends. J Membr Sci 411:81–90

    Article  Google Scholar 

  17. Jayaprakash S, Halith SM, Firthouse PM, Yasmin NM (2010) Preparation and evaluation of celecoxib transdermal patches. Pak J Pharm Sci 23(3):279–283

    CAS  PubMed  Google Scholar 

  18. Verma N, Deshwal S (2014) Design and in vitro evaluation of transdermal patches containing ketoprofen. World J Pharm Res 3(3):3930–3944

    Google Scholar 

  19. Akram MR, Ahmad M, Abrar A, Sarfraz RM, Mahmood A (2018) Formulation design and development of matrix diffusion controlled transdermal drug delivery of glimepiride. Drug Des Dev Ther 12:349

    Article  CAS  Google Scholar 

  20. Ali FR, Shoaib MH, Yousuf RI, Ali SA, Imtiaz MS, Bashir L, Naz S (2017) Design, development, and optimization of dexibuprofen microemulsion based transdermal reservoir patches for controlled drug delivery. Biomed Res Int. https://doi.org/10.1155/2017/4654958

    Article  PubMed  PubMed Central  Google Scholar 

  21. Allena RT, Yadav HK, Sandina S, Sarat Chandra Prasad M (2012) Preparation and evaluation of transdermal patches of metformin hydrochloride using natural polymer for sustained release. International Journal of Pharmacy and Pharmaceutical Sciences 4

  22. Bharkatiya M, Nema R, Bhatnagar M (2010) Designing and characterization of drug free patches for transdermal application. Int J Pharm Sci Drug Res 2(1):35–39

    CAS  Google Scholar 

  23. Aftab K (2017) Polymeric transdermal drug delivery system of ramipril and repaglinide: in-vitro and ex-vivo evaluation. EC Pharmacol Toxicol 4:20–32

    Google Scholar 

  24. Tanwar Y, Chauhan C, Sharma A (2007) Development and evaluation of carvedilol transdermal patches. Acta Pharm 57(2):151–159

    Article  CAS  PubMed  Google Scholar 

  25. Prabu SL, SuriyaPrakash T, Thiyagarajan S, Amritha M, Manibharathi R, Priyadharsini N (2012) Design and evaluation of matrix diffusion controlled transdermal patches of dexibuprofen. J Appl Res 12(1)

  26. Shabbir M, Ali S, Raza M, Sharif A, Akhtar FM, Manan A, Fazli AR, Younas N, Manzoor I (2017) Effect of hydrophilic and hydrophobic polymer on in vitro dissolution and permeation of bisoprolol fumarate through transdermal patch. Acta Pol Pharm 74(1):187–197

    CAS  PubMed  Google Scholar 

  27. Patel RP, Patel G, Patel H, Baria A (2009) Formulation and evaluation of transdermal patch of aceclofenac. Res J Pharm Dos Forms Technol 1(2):108–115

    Google Scholar 

  28. Patel KN, Patel HK, Patel VA (2012) Formulation and characterization of drug in adhesive transdermal patches of diclofenac acid. Int J Pharm Pharm Sci 4(1):296–299

    CAS  Google Scholar 

  29. Castaneda PS, Escobar-Chavez JJ, Aguado A, Rodríguez Cruz I, Melgoza Contreras L (2017) Design and evaluation of a transdermal patch with atorvastatin. Farmacia 65(6):908–916

    CAS  Google Scholar 

  30. Manikandan A, Nemani SC, Sadheeshkumar V, Arumugam S (2016) Spectroscopic investigations for photo stability of diclofenac sodium complexed with hydroxypropyl-β-cyclodextrin. J Appl Pharm Sci 6(04):098–103

    Article  CAS  Google Scholar 

  31. Maiti S, Kaity S, Ray S, Sa B (2011) Development and evaluation of xanthan gum-facilitated ethyl cellulose microsponges for controlled percutaneous delivery of diclofenac sodium. Acta Pharm 61(3):257–270

    Article  CAS  PubMed  Google Scholar 

  32. Shinde AJ, Patil MS, More HN (2010) Formulation and evaluation of an oral floating tablet of cephalexin. Indian J Pharm Educ Res 44(3):43

    Google Scholar 

  33. Tudja P, Khan MZI, Mestrovic E, Horvat M, Golja P (2001) Thermal behaviour of diclofenac sodium: decomposition and melting characteristics. Chem Pharm Bull 49(10):1245–1250. https://doi.org/10.1248/cpb.49.1245

    Article  CAS  Google Scholar 

  34. Sipos P, Szucs M, Szabo A, Eros I, Szabo-Revesz P (2008) An assessment of the interactions between diclofenac sodium and ammonio methacrylate copolymer using thermal analysis and Raman spectroscopy. J Pharm Biomed Anal 46(2):288–294. https://doi.org/10.1016/j.jpba.2007.10.008

    Article  CAS  PubMed  Google Scholar 

  35. Trapani A, Laquintana V, Denora N, Lopedota A, Cutrignelli A, Franco M, Trapani G, Liso G (2007) Eudragit RS 100 microparticles containing 2-hydroxypropyl-β-cyclodextrin and glutathione: physicochemical characterization, drug release and transport studies. Eur J Pharm Sci 30(1):64–74. https://doi.org/10.1016/j.ejps.2006.10.003

    Article  CAS  PubMed  Google Scholar 

  36. Mutalik S, Udupa N (2006) Pharmacological evaluation of membrane-moderated transdermal system of Glipizide. Clin Exp Pharmacol Physiol 33(1–2):17–26

    Article  CAS  PubMed  Google Scholar 

  37. Shah VP, Tymes NW, Yamamoto LA, Skelly JP (1986) In vitro dissolution profile of transdermal nitroglycerin patches using paddle method. Int J Pharm 32(2–3):243–250

    Article  CAS  Google Scholar 

  38. Budhathoki U, Thapa P (2005) Effect of chemical enhancers on in vitro release of salbutamol sulphate from transdermal patches. Kathmandu Univ J Sci Eng Technol 1(1)

  39. David SRN, Rajabalaya R, Zhia ES (2015) Development and in vitro evaluation of self-adhesive matrix-type transdermal delivery system of ondansetron hydrochloride. Trop J Pharm Res 14(2):211–218

    Article  CAS  Google Scholar 

  40. Moreira TSA, Pereira de Sousa V, Pierre MBR (2010) A novel transdermal delivery system for the anti-inflammatory lumiracoxib: influence of oleic acid on in vitro percutaneous absorption and in vivo potential cutaneous irritation. AAPS PharmSciTech 11(2):621–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Otterbach A, Lamprecht A (2021) Enhanced skin permeation of estradiol by dimethyl sulfoxide containing transdermal patches. Pharmaceutics 13(3):320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Taghizadeh SM, Moghimi-Ardakani A, Mohamadnia F (2015) A statistical experimental design approach to evaluate the influence of various penetration enhancers on transdermal drug delivery of buprenorphine. J Adv Res 6(2):155–162

    Article  CAS  PubMed  Google Scholar 

  43. Hashmat D, Shoaib MH, Ali FR, Siddiqui F (2020) Lornoxicam controlled release transdermal gel patch: design, characterization and optimization using co-solvents as penetration enhancers. PLoS ONE 15(2):e0228908. https://doi.org/10.1371/journal.pone.0228908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to faculty of pharmacy, University of Lahore, Lahore, for providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Farooq.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, H.M., Farooq, M., Adnan, S. et al. Development and evaluation of reservoir transdermal polymeric patches for controlled delivery of diclofenac sodium. Polym. Bull. 80, 6793–6818 (2023). https://doi.org/10.1007/s00289-022-04390-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04390-0

Keywords

Navigation