Skip to main content

Advertisement

Log in

Development of natural rubber with enhanced oxidative degradability

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A persistent increase in the amount of rubber waste in the environment could herald the next environmental crisis. Elastomeric properties of natural rubber are relevant and essential for a wide range of applications, and because of the heavy utilization, there is a huge amount of rubber waste produced. Rubber waste, like most hydrocarbon polymers, does not readily degrade when discarded in the environment, resulting in excessive accumulation over time. Hence, novel or innovative approaches to improving natural rubber degradability are required for better waste management. The aim of the present study is to evaluate the effectiveness of metal stearates in enhancing the thermal oxidative degradability of natural rubber. Natural rubbers were blended individually with cobalt (II) stearate and iron (III) stearate, and the compounded rubbers were subsequently thermally treated in an oxidative environment at 65 °C for up to 8 weeks. Throughout the degradation period, the rubber films were characterized by FTIR, 1H-NMR, 13C-NMR, water contact angle, molecular weight analysis, and thermogravimetric analysis. Rubber films compounded with metal stearates experienced 1200% increase in carbonyl content, significant increase in hydrophilicity, and reduction in molecular weight by greater than 80%. These changes are highly desirable in the context of oxo-biodegradable materials because they could facilitate the subsequent biotic degradation process. The findings in this study indicate that metal stearates are efficient in enhancing the rubber’s oxidative degradability. The technology may be adopted to innovate oxo-biodegradable rubbers for a more sustainable rubber consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Sourkouni G, Kalogirou C, Moritz P, Gödde A, Pandis PK, Höfft O, Vouyiouka S, Zorpas AA, Argirusis C (2021) Study on the influence of advanced treatment processes on the surface properties of polylactic acid for a bio-based circular economy for plastics. Ultrason Sonochem 76:105627

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Okoffo ED, Donner E, McGrath SP, Tscharke BJ, O’Brien JW, O’Brien S, Ribeiro F, Burrows SD, Toapanta T, Rauert C, Samanipour S, Mueller JF, Thomas KV (2021) Plastics in Biosolids from 1950 to 2016: A function of global plastic production and consumption. Water Res 201:117367

    CAS  PubMed  Google Scholar 

  3. Lebreton L, Andrady A (2019) Future scenarios of global plastic waste generation and disposal. Palgrave Commun. https://doi.org/10.1057/s41599-018-0212-7

    Article  Google Scholar 

  4. Allouzi MM, Tang DY, Chew KW, Rinklebe J, Bolan N, Allouzi SM, Show PL (2021) Micro (Nano) plastic pollution: the ecological influence on soil-plant system and human health. Sci Total Environ 788:147815

    CAS  PubMed  Google Scholar 

  5. Singh B, Sharma D (2012) Bioplastics-for sustainable development: a review. Int J Microb Resour Technol 11:11–23

    Google Scholar 

  6. Azmin SN, Hayat NA, Nor MS (2020) Development and characterization of food packaging bioplastic film from cocoa pod husk cellulose incorporated with sugarcane bagasse fibre. J Bioresour Bioprod 5(4):248–255

    CAS  Google Scholar 

  7. Ibrahim MIJ, Sapuan SM, Zainudin ES, Zuhri MYM (2019) Potential of using multiscale corn husk fiber as reinforcing filler in cornstarch-based biocomposites. Int J Biol Macromol 139:596–604

    CAS  PubMed  Google Scholar 

  8. Wang J-l, Cheng F, Zhu P-x (2014) Structure and properties of urea-plasticized starch films with different urea contents. Carbohydr Polym 101:1109–1115. https://doi.org/10.1016/j.carbpol.2013.10.050

    Article  CAS  PubMed  Google Scholar 

  9. Chu C-Y, Huang C-C, Tseng T-W, Tsai P-H, Wang C-H, Chen CW (2021) Mechanically reinforced biodegradable starch-based polyester with the specific poly(ethylene ether carbonate). Polymer 219:123512

    CAS  Google Scholar 

  10. Hosseini SN, Pirsa S, Farzi J (2021) Biodegradable nano composite film based on modified starch-albumin/mgo; antibacterial, antioxidant and structural properties. Polym Testing 97:107182

    CAS  Google Scholar 

  11. Andler R (2020) Bacterial and enzymatic degradation of poly(cis-1,4-isoprene) rubber: novel biotechnological applications. Biotechnol Adv 44:107606

    CAS  PubMed  Google Scholar 

  12. Ali MF, Akber MA, Smith C, Aziz AA (2021) The dynamics of rubber production in malaysia: potential IMPACTS, challenges and proposed interventions. Forest Policy Econ 127:102449

    Google Scholar 

  13. Xie Y, Hassan AA, Song P, Zhang Z, Wang S (2019) High scission of butadiene rubber vulcanizate under thermo-oxidation. Polym Degrad Stab 167:292–301

    CAS  Google Scholar 

  14. Ikram A (2003) Environmental degradation of NR latex gloves in a composting environment. J Rubber Res 6(2):73–83

    CAS  Google Scholar 

  15. Jiang K, Shi J, Ge Y, Zou R, Yao P, Li X, Zhang L (2013) Complete devulcanization of sulfur cured butyl rubber by using supercritical carbon dioxide. J Appl Polym Sci 127:2397–2406

    CAS  Google Scholar 

  16. Zhang Z, Li J, Wan C, Zhang Y, Wang S (2021) Understanding H2O2-induced thermo-oxidative reclamation of vulcanized styrene butadiene rubber at low temperatures. ACS Sustain Chem Eng 9:2378–2387

    CAS  Google Scholar 

  17. Walvekar R, Afiq ZM, Ramarad S, Khalid S (2018) Devulcanization of waste tire rubber using amine based solvents and ultrasonic energy. EDP Sci 152:1007

    Google Scholar 

  18. Saputra R, Walvekar R, Khalid M, Ratnam CT, Mubarak NM, Dharaskar S (2020) Devulcanisation of ground rubber tyre by novel ternary deep eutectic solvents. J Mol Liq 306:112913

    CAS  Google Scholar 

  19. Antunes MC, Agnelli JAM, Babetto AS, Bonse BC, Bettini SHP (2018) Correlating different techniques in the thermooxidative degradation monitoring of high-density polyethylene containing pro-degradant and antioxidants. Polym Test 69:182–187

    CAS  Google Scholar 

  20. Montagna LS, Andre LC, Maria M, Chiellini E, Andrea C, Andre M, Santana R (2015) Comparative assessment of degradation in aqueous medium of polypropylene films doped with transition metal free (experimental) and transition metal containing (commercial) pro-oxidant/pro-degradant additives after exposure to controlled UV radiation. Polym Degrad Stab 120:186–192

    CAS  Google Scholar 

  21. Abrusci C, Pablos JL, Marín I, Espí E, Corrales T, Catalina F (2013) Comparative effect of metal stearates as pro-oxidant additives on bacterial biodegradation of thermal- and photo-degraded low density polyethylene mulching films. Int Biodeterior Biodegrad 83:25–32

    CAS  Google Scholar 

  22. Sable S, Ahuja S, Bhunia H (2020) Preparation and characterization of oxo-degradable polypropylene composites containing a modified pro-oxidant. J Polym Environ 29(3):721–733

    Google Scholar 

  23. Billingham NC, Bonora M, de Corte D (2003) Environmentally degradable plastics based on oxo-biodegradation of conventional polyolefins. In: Chiellini E, Solaro R (eds) Biodegradable polymers and plastics. Springer, pp 313–325

    Google Scholar 

  24. Sable S, Mandal DK, Ahuja S, Bhunia H (2019) Biodegradation kinetic modeling of oxo-biodegradable polypropylene/polylactide/nanoclay blends and composites under controlled composting conditions. J Environ Manage 249:109186

    CAS  PubMed  Google Scholar 

  25. Nawong C, Umsakul K, Sermwittayawong N (2018) Rubber gloves biodegradation by a consortium, mixed culture and pure culture isolated from soil samples. Braz J Microbiol 49(3):481–488

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Yikmis M, Steinbüchel A (2012) Historical and recent achievements in the field of microbial degradation of natural and synthetic rubber. Appl Environ Microbiol 78(13):4543–4551

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sable S, Ahuja S, Bhunia H (2020) Studies on biodegradability of cobalt stearate filled polypropylene after abiotic treatment. J Polym Environ 28(8):2236–2252

    CAS  Google Scholar 

  28. Subramaniam M, Sharma S, Gupta A, Abdullah N (2018) Enhanced degradation properties of polypropylene integrated with iron and cobalt stearates and its synthetic application. J Appl Polym Sci 135(12):46028

    Google Scholar 

  29. Hayoune F, Chelouche S, Trache D, Zitouni S, Grohens Y (2020) Thermal decomposition kinetics and lifetime prediction of a PP/PLA blend supplemented with iron stearate during artificial aging. Thermochim Acta 690:178700

    CAS  Google Scholar 

  30. Almond J, Sugumaar P, Wenzel MN, Hill G, Wallis C (2020) Determination of the carbonyl index of polyethylene and polypropylene using specified area under band methodology with ATR-FTIR spectroscopy. e-Polymers 20(1):369–381

    CAS  Google Scholar 

  31. Martínez-Romo A, González-Mota R, Soto-Bernal JJ, Rosales-Candelas I (2015) Investigating the degradability of HDPE, LDPE, PE-Bio, and pe-oxo films under UV-B radiation. J Spectrosc 2015:1–6

    Google Scholar 

  32. Dewi R, Sylvia N, Riza M (2021) The effect of rice husk and saw dusk filler on mechanical property of bio composite from Sago Starch. Int J Eng, Sci Inf Technol 1(3):98–103

    Google Scholar 

  33. Mahdi E, Dean A (2020) The effect of filler content on the tensile behavior of polypropylene/cotton fiber and poly(vinyl chloride)/cotton fiber composites. Materials 13(3):753

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rizzarelli P, Rapisarda M, Ascione L, Innocenti FD, La Mantia FP (2021) Influence of photo-oxidation on the performance and soil degradation of oxo- and biodegradable polymer-based items for agricultural applications. Polym Degrad Stab 188:109578

    CAS  Google Scholar 

  35. Chen X, Sun-Waterhouse D, Yao W, Li X, Zhao M, You L (2021) Free radical-mediated degradation of polysaccharides: mechanism of free radical formation and degradation, influence factors and product properties. Food Chem 365:130524

    CAS  PubMed  Google Scholar 

  36. Song P, Wu X, Wang S (2018) Effect of styrene butadiene rubber on the light pyrolysis of the natural rubber. Polym Degrad Stab 147:168–176

    CAS  Google Scholar 

  37. Schaller C (2020) Radical Initiation- Radical Stability. College of Saint Benedict/Saint John’s University. Retrieved from https://chem.libretexts.org/@go/page/190040

  38. Edenborough M (2017) Organic reaction mechanisms: A step by step approach. CRC Press. https://doi.org/10.1201/9781315273181

    Book  Google Scholar 

  39. Thuong NT, Yamamoto Y, Nghia PT, Kawahara S (2016) Analysis of damage in commercial natural rubber through NMR spectroscopy. Polym Degrad Stab 123:155–161

    CAS  Google Scholar 

  40. Li Z, Yang C, Wei Y, Zhou Y, Liao S (2021) Characterization of the Trans-structure in the molecular chain structure of natural rubber. J Mol Struct 1246:131209

    CAS  Google Scholar 

  41. Klinkajorn J, Tanrattanakul V (2020) The effect of epoxide content on compatibility of poly(lactic acid)/epoxidized natural rubber blends. J Appl Polym Sci 137(34):48996

    CAS  Google Scholar 

  42. Banan A, Mehdipour H (2021) Controlled degradation and functionalization of natural rubber by ozonolysis in organic solvent. J Polym Res. https://doi.org/10.1007/s10965-021-02671-2

    Article  Google Scholar 

  43. Pelosi C, Tinè MR, Wurm FR (2020) Main-chain water-soluble polyphosphoesters: multi-functional polymers as degradable PEG-alternatives for biomedical applications. Eur Polymer J 141:110079

    CAS  Google Scholar 

  44. de Oliveira Gama R, Bretas RE, Oréfice RL (2016) Control of the hydrophilic/hydrophobic behavior of biodegradable natural polymers by decorating surfaces with nano- and micro-components. Adv Polym Technol 37(3):654–661

    Google Scholar 

  45. Tai NL, Ghasemlou M, Adhikari R, Adhikari B (2021) Starch-based isocyanate- and non-isocyanate polyurethane hybrids: a review on synthesis, performance and biodegradation. Carbohyd Polym 265:118029

    CAS  Google Scholar 

  46. Siracusa V (2019) Microbial degradation of synthetic biopolymers waste. Polymers 11(6):1066

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Rogers KL, Carreres-Calabuig JA, Gorokhova E, Posth NR (2020) Micro-by-micro interactions: How microorganisms influence the fate of marine microplastics. Limnol Oceanogr Lett 5(1):18–36

    CAS  Google Scholar 

  48. Glaser JA (2019) Biological degradation of polymers in the environment. In: Gomiero A (ed) Plastics in the Environment. IntechOpen. https://doi.org/10.5772/intechopen.85124

    Chapter  Google Scholar 

  49. Han Y-N, Wei M, Han F, Fang C, Wang D, Zhong Y-J, Guo C-L, Shi X-Y, Xie Z-K, Li F-M (2020) Greater biofilm formation and increased biodegradation of polyethylene film by a microbial consortium of Arthrobacter sp. and Streptomyces sp. Microorganisms 8(12):1979

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Michael FM, Khalid M, Walvekar R, Siddiqui H, Balaji AB (2018) Surface modification techniques of biodegradable and biocompatible polymers. Biodegradable and biocompatible polymer composites. Elsevier, pp 33–54

    Google Scholar 

  51. Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T, Jang JH, Abu-Omar M, Scott SL, Suh S (2020) Degradation rates of plastics in the environment. ACS Sustain Chem Eng 8(9):3494–3511

    CAS  Google Scholar 

  52. Nakamura S, Tsuji Y, Yoshizawa K (2020) Role of hydrogen-bonding and OH−π interactions in the adhesion of epoxy resin on hydrophilic surfaces. ACS Omega 5(40):26211–26219

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Karimi M, Biria D (2019) The promiscuous activity of alpha-amylase in biodegradation of low-density polyethylene in a polymer-starch blend. Sci Rep. https://doi.org/10.1038/s41598-019-39366-0

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ghatge S, Yang Y, Ahn J-H, Hur H-G (2020) Biodegradation of polyethylene: a brief review. Appl Biol Chem. https://doi.org/10.1186/s13765-020-00511-3

    Article  Google Scholar 

  55. Laurier KG, Vermoortele F, Ameloot R, De Vos DE, Hofkens J, Roeffaers MB (2013) Iron (III)-based metal–organic frameworks as visible light photocatalysts. J Am Chem Soc 135(39):14488–14491

    CAS  PubMed  Google Scholar 

  56. Contat-Rodrigo L (2013) Thermal characterization of the oxo-degradation of polypropylene containing a pro-oxidant/pro-degradant additive. Polym Degrad Stab 98(11):2117–2124

    CAS  Google Scholar 

  57. Nair AB, Joseph R (2014) Eco-friendly bio-composites using natural rubber (NR) matrices and natural fiber reinforcements. Chemistry Manufacture and Applications of Natural Rubber. Elsevier, pp 249–283

    Google Scholar 

Download references

Funding

This project is funded by University of Malaya Faculty Research Grant GPF085-2020.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Natasya Nabilla Hairon Azhar. The first draft of the manuscript was written by Natasya Nabilla Hairon Azhar and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Desmond Teck-Chye Ang and Acga Cheng contributed to supervision.

Corresponding author

Correspondence to Desmond Teck-Chye Ang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2414 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azhar, N.N.H., Cheng, A., Lee, S.Y. et al. Development of natural rubber with enhanced oxidative degradability. Polym. Bull. 80, 3927–3948 (2023). https://doi.org/10.1007/s00289-022-04240-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04240-z

Keywords

Navigation