Skip to main content

Advertisement

Log in

Crystalline properties and morphology of bulk-fill dental resin composites as function of light-cure protocol and composition

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

It is very important to characterize the crystalline and amorphous phases of resin composites because they are associated with the material’s mechanical behavior. Therefore, this study aimed to determine the inorganic elemental composition (by EDXRF), crystalline and amorphous phases, crystallinity index, crystallite size, average distance between scattering centers (by XRD) and morphology (by SEM) of three bulk-fill resin composites with different flowability submitted to different light-cure protocols. Samples (N = 3) of Tetric N-Ceram bulk-fill (TNC), Opus bulk-fill (OBF), and Filtek bulk-fill Flow (FBFF) resins were submitted to the following light-cure protocols: control (P0)—not irradiated; standard (P1)—irradiance of 1000 mW/cm2 for 20 s; and Xtra (P2)—irradiance of 3200 mW/cm2 for 6 s. The composite’s crystallinity showed to be dependent on the type of filler loads and not dependent of the light-cure protocol. The TNC and FBFF resins were identified as semi-crystalline materials, while OBF presented only an amorphous halo. Although the light-cure protocol did not influence the composite’s crystalline properties, the polymeric particles observed on composite’s surface presented smaller average particle size and were more homogeneous when samples were irradiated with higher potency (P2). Only YbF3 (found in TNC and FBFF) and ZrO2 (found in FBFF) compounds contribute to the crystalline phase of the BFRCs tested, besides being the only particles detected in the nanometric scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Peutzfeldt A (1997) Resin composites in dentistry: the monomer systems. Eur J Oral Sci 105:97–116. https://doi.org/10.1111/j.1600-0722.1997.tb00188.x

    Article  CAS  PubMed  Google Scholar 

  2. Anusavice KJ, Shen C, Rawls HR (2013) Phillips, science of dental materials, 12° edn. Elsevier, Alpharetta

  3. Ferracane JL (1995) Current trends in dental composites. Crit Rev Oral Biol Med 6:302–318. https://doi.org/10.1177/10454411950060040301

    Article  CAS  PubMed  Google Scholar 

  4. Hwang JJSPI (2015) Polymerization shrinkage and depth of cure of bulk-fill resin composites and highly filled flowable resin. Oper Dent 40:172–180. https://doi.org/10.2341/13-307-L

    Article  PubMed  Google Scholar 

  5. Miranda CB, Alves E, Campos DOS (2015) State of the art of bulk-fill resin-based composites: a review. Revista Facultad de Odontología Universidad de Antioquia 27:177–197

    Google Scholar 

  6. Bucuta S, Ilie N (2014) Light transmittance and micro-mechanical properties of bulk fill vs. conventional resin based composites. Clin Oral Investig 18:1991–2000. https://doi.org/10.1007/s00784-013-1177-y

    Article  PubMed  Google Scholar 

  7. Bresciani E, Caneppele TMF (2016) Resinas bulk-fill – O estado da arte. Revista da Associacao Paulista de Cirurgiões Dentistas 70:242–248

    Google Scholar 

  8. Chesterman J, Jowett A, Gallacher A (2017) Bulk-fill resin-based composite restorative materials: a review. Br Dent J 222:337–344. https://doi.org/10.1038/sj.bdj.2017.214

    Article  CAS  PubMed  Google Scholar 

  9. Junior SAR, Scherrer SS, Ferracane JL, Della Bona A (2008) Microstructural characterization and fracture behavior of a microhybrid and a nanofill composite. Dent Mater 24:1281–1288. https://doi.org/10.1016/j.dental.2008.02.006

    Article  CAS  Google Scholar 

  10. Kim RJ, Kim Y, Choi N, Lee I (2015) Polymerization shrinkage, modulus, and shrinkage stress related to tooth-restoration interfacial debonding in bulk-fill composites. J Dent 43:430–439. https://doi.org/10.1016/j.jdent.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  11. Li Y, Swartz ML, Phillips RW, Moore BK, Roberts TA (1985) Materials science effect of filler content and size on properties of composites. J Dent Res 64:1396–1403. https://doi.org/10.1177/00220345850640121501

    Article  CAS  PubMed  Google Scholar 

  12. Kim KH, Ong JL, Okuno O (2002) The effect of filler loading and morphology on the mechanical properties of contemporary composites. J Prosthet Dent 87:642–649. https://doi.org/10.1067/mpr.2002.125179

    Article  CAS  PubMed  Google Scholar 

  13. Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos B Eng 39:933–961. https://doi.org/10.1016/j.compositesb.2008.01.002

    Article  CAS  Google Scholar 

  14. Spahr DE, Schultz JM (1990) Determination of matrix crystallinity of composites by X-ray diffraction. Polym Compos 11:201–210. https://doi.org/10.1002/pc.750110402

    Article  CAS  Google Scholar 

  15. Henrique P, Alpino PD, Vinı M, Frederico C, Graeff DO, Hortencia A, Gonza M (2014) Free radical entrapment and crystallinity of resin composites after accelerated aging as a function of the expiration date. J Mech Behav Biomed Mater 36:82–89. https://doi.org/10.1016/j.jmbbm.2014.04.009

    Article  CAS  Google Scholar 

  16. Bush MA, Miller RG, Prutsman-Pfeiffer J, Bush PJ (2006) Identification through X-ray fluorescence analysis of dental restorative resin materials: a comprehensive study of noncremated, cremated, and processed-cremated individuals. J Forensic Sci 52:157–165. https://doi.org/10.1111/j.1556-4029.2006.00308.x

    Article  CAS  Google Scholar 

  17. Kamalak H, Canan A, Altin S (2018) The mechanical properties of nanohybrid and bulk fill posterior composites. Biomed Res 29:2179–2186. https://doi.org/10.4066/biomedicalresearch.29-18-482

    Article  CAS  Google Scholar 

  18. Stern P, Polymer ES (1968) On the structure of polypropylene fibres. Polymer 9:471–477. https://doi.org/10.1016/0032-3861(68)90057-8

    Article  CAS  Google Scholar 

  19. Tzeng S, Chr Y (2002) Evolution of microstructure and properties of phenolic resin-based carbon/carbon composites during pyrolysis. Mater Chem Phys 73:162–169. https://doi.org/10.1016/S0254-0584(01)00358-3

    Article  CAS  Google Scholar 

  20. Short M, Carbon PWJ (1963) Measurement of interlayer spacings and crystal sizes in turbostratic carbons. Carbon 1:3–9. https://doi.org/10.1016/0008-6223(63)90003-4

    Article  CAS  Google Scholar 

  21. Collares FM, Ogliari FA, Lima GS, Fontanella VRC, Piva E, Samuel SMW (2010) Ytterbium trifluoride as a radiopaque agent for dental cements. Int Endod J 43:792–797. https://doi.org/10.1111/j.1365-2591.2010.01746.x

    Article  CAS  PubMed  Google Scholar 

  22. Soares C, Rosatto C, Carvalho V, Bicalho A, Henriques J, Faria-e-Silva A (2017) Radiopacity and porosity of bulk-fill and conventional composite posterior restorations—digital X-ray analysis. Oper Dent 42:616–625. https://doi.org/10.2341/16-146-L

    Article  CAS  PubMed  Google Scholar 

  23. Asaka Y, Miyazaki M, Aboshi H, Yoshida T, Takamizawa T, Kurokawa H, Rikuta A (2004) EDX fluorescence analysis and SEM observations of resin composites. J Oral Sci 46:143–148. https://doi.org/10.2334/josnusd.46.143

    Article  CAS  PubMed  Google Scholar 

  24. Oliveira TCS, Piva E, Leal FB, Moncks MD, Raubach CW (2012) YbF3/SiO2 fillers as radiopacifiers in a dental adhesive resin. Nano Micro Lett 4:189–196. https://doi.org/10.3786/nml.v4i3

    Article  Google Scholar 

  25. Cardin D, Lappert M, Raston C (1986) Chemistry of organo-zirconium and -hafnium compounds. Ellis Horwood Ltd, USA

    Google Scholar 

  26. Mitra S, Wu D (2003) An application of nanotechnology in advanced dental materials. J Am Dent Assoc 134:1382–1390. https://doi.org/10.14219/jada.archive.2003.0054

    Article  CAS  PubMed  Google Scholar 

  27. Besegato J, Inocente E, Casanova A, Vignoto R, Martins F, Luiz B, Vicentin S (2019) Effect of light-curing protocols on the mechanical behavior of bulk-fill resin composites. J Mech Behav Biomed Mater 90:381–387. https://doi.org/10.1016/j.jmbbm.2018.10.026

    Article  CAS  PubMed  Google Scholar 

  28. Jaarda MJ, Lang BR, Wang RF, Edwards CA (1993) Measurement of composite resin filler particles by using scanning electron microscopy and digital imaging. J Prosthet Dent 69:416–424. https://doi.org/10.1016/0022-3913(93)90191-P

    Article  CAS  PubMed  Google Scholar 

  29. Reis AF, Giannini M, Ambrosano GMB, Chan DC (2003) The effects of filling techniques and a low-viscosity composite liner on bond strength to class II cavities. J Dent 31:59–66. https://doi.org/10.1016/S0300-5712(02)00122-7

    Article  Google Scholar 

  30. Takanashi E, Kishikawa R, Ikeda M, Inai N, Otsuki M, Foxton RM, Tagami J (2008) Influence of abrasive particle size on surface properties of flowable composites. Dent Mater J 27:780–786. https://doi.org/10.4012/dmj.27.780

    Article  CAS  PubMed  Google Scholar 

  31. Fronza B, Ayres A, Pacheco R, Rueggeberg F, Dias C, Giannini M (2017) Characterization of inorganic filler content, mechanical properties, and light transmission of bulk-fill resin composites. Oper Dent 42:445–455. https://doi.org/10.2341/16-024-L

    Article  CAS  PubMed  Google Scholar 

  32. Soh MS, Yap AUJ (2004) Influence of curing modes on crosslink density in polymer structures. J Dent 32:321–326. https://doi.org/10.1016/j.jdent.2004.01.012

    Article  CAS  PubMed  Google Scholar 

  33. Sigemori R, Reis A, Giannini M, Paulillo L (2005) Curing depth of a resin-modified glass ionomer and two resin-based luting agents. Oper Dent 28:185–189

    Google Scholar 

  34. Burey A, dos Reis PJ, Santana Vicentin BL, Dezan Garbelini CC, Grama Hoeppner M, Appoloni CR (2018) Polymerization shrinkage and porosity profile of dual cure dental resin cements with different adhesion to dentin mechanisms. Microsc Res Tech 81:88–96. https://doi.org/10.1002/jemt.22960

    Article  CAS  PubMed  Google Scholar 

  35. Buelvas DDA, Besegato JF, Vicentin BLS, Jussiani EI, Hoeppner MG, Andrello AC, Di Mauro E (2020) Impact of light-cure protocols on the porosity and shrinkage of commercial bulk fill dental resin composites with different flowability. J Polym Res 27:1–10. https://doi.org/10.1007/s10965-020-02257-4

    Article  CAS  Google Scholar 

  36. Furtos G, Baldea B, Silaghi-Dumitrescu L, Moldovan M, Prejmerean C, Nica L (2012) Influence of inorganic filler content on the radiopacity of dental resin cements. Dent Mater J 31:266–272. https://doi.org/10.4012/dmj.2011-225

    Article  CAS  PubMed  Google Scholar 

  37. Ermis RB, Yildirim D, Yildiz G, Gormez O (2014) Radiopacity evaluation of contemporary resin composites by digitization of images. Eur J Dent 8:342–347. https://doi.org/10.4103/1305-7456.137644

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Luiz Santana Vicentin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buelvas, D.D.A., Vicentin, B.L.S., Urbano, A. et al. Crystalline properties and morphology of bulk-fill dental resin composites as function of light-cure protocol and composition. Polym. Bull. 80, 2349–2366 (2023). https://doi.org/10.1007/s00289-022-04163-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04163-9

Keywords

Navigation