Skip to main content
Log in

A flexible method for changing the transition temperature of polyurethane solid–solid phase change materials

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Transition temperature is significant in determining applications of phase change materials. In this paper, PEG2000 and PEG4000 were used as soft segments and MDI and 3,3ʹ-Dichloro-4,4ʹ-diaminodiphenylmethane (MOCA) were used as hard segments. Several polyurethane solid–solid phase change materials (PUSSPCMs) were synthesized by adjusting the mass ratio of PEG4000 and PEG2000. Based on the differential scanning calorimeter test, this paper studied the relationship between the mass ratio of PEG2000 and the phase transition temperature. The influence mechanism of phase change temperature was revealed from molecular structure, crystallization properties, and surface morphology. Furthermore, PUSSPCMs were tested for leakage and the thermal stability. The results showed that the synthesized PUSSPCMs had no liquid leakage during the heating process. There was a good linear relationship between the mass ratio of PEG2000 and phase transition temperature. The thermal decomposition onset temperature was above 230 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Varvagiannis E, Charalampidis A, Zsembinszki G et al (2021) Energy assessment based on semi-dynamic modelling of a photovoltaic driven vapour compression chiller using phase change materials for cold energy storage. Renew Energy 163:198–212

    Article  Google Scholar 

  2. Olfian H, Ajarostaghi S, Farhadi M et al (2020) Melting and solidification processes of phase change material in evacuated tube solar collector with U-shaped spirally corrugated tube. Appl Therm Eng 182(1):116149

    Google Scholar 

  3. Pan A, Wang Y, Cao Y et al (2020) Research on thermal properties of phase change thermal control materials Bi–21In–18Pb–12Sn and Ga–13.5Sn with low melting point. J Mater Res Technol Jmr T 9(3):3897–3906

    Article  CAS  Google Scholar 

  4. Fonseca A, Neves SF, Campos JBLM (2021) Thermal performance of a PCM firefighting suit considering transient periods of fire exposure, post–fire exposure and resting phases. Appl Therm Eng 182:115769

    Article  Google Scholar 

  5. Chamoli SK, Verma G, Singh SC et al (2020) Phase change material-based nano-cavity as an efficient optical modulator. Nanotechnology 32:095207

    Article  Google Scholar 

  6. Du X, Wang H, Wu Y et al (2017) Solid–solid phase-change materials based on hyperbranched polyurethane for thermal energy storage. J Appl Polym Sci 134(26):45014

    Article  Google Scholar 

  7. Sundararajan S, Samui AB, Kulkarni PS (2017) Thermal energy storage using poly(ethylene glycol) incorporated hyperbranched polyurethane as solid–solid phase change material. Ind Eng Chem Res 56(49):14401–14409

    Article  CAS  Google Scholar 

  8. Wei K, Wang X, Ma B et al (2019) Study on rheological properties and phase-change temperature control of asphalt modified by polyurethane solid–solid phase change material. Sol Energy 194:893–902

    Article  CAS  Google Scholar 

  9. Alkan C, Günther E, Hiebler S et al (2012) Polyurethanes as solid–solid phase change materials for thermal energy storage. Sol Energy 86(6):1761–1769

    Article  CAS  Google Scholar 

  10. Wei K, Ma B, Duan SY (2019) Preparation and properties of bitumen-modified polyurethane solid–solid phase change materials. J Mater Civ Eng 31(8):0401

    Article  CAS  Google Scholar 

  11. Wei K, Ma B, Huang X et al (2019) Influence of NiTi alloy phase change heat-storage particles on thermophysical parameters, phase change heat-storage thermoregulation effect, and pavement performance of asphalt mixture. Renew Energy 141:431–443

    Article  CAS  Google Scholar 

  12. Xi P, Duan Y, Fei P et al (2012) Synthesis and thermal energy storage properties of the polyurethane solid–solid phase change materials with a novel tetrahydroxy compound. Eur Polym J 48(7):1295–1303

    Article  CAS  Google Scholar 

  13. Oktay B, Kayaman-Apohan N (2021) Biodegradable polyurethane solid–solid phase change materials. ChemistrySelect 6(24):6280–6285

    Article  CAS  Google Scholar 

  14. Zhou Y, Sheng DK, Liu XD et al (2018) Synthesis and properties of crosslinking halloysite nanotubes/polyurethanebased solid–solid phase change materials. Sol Energy Mater Sol Cells 174:84–93

    Article  CAS  Google Scholar 

  15. Lu X, Fang C, Sheng X et al (2019) One-step and solvent-free synthesis of polyethylene glycol-based polyurethane as solid–solid phase change materials for solar thermal energy storage. Ind Eng Chem Res 58(8):3024–3032

    Article  CAS  Google Scholar 

  16. Fan X, Pu Z, Zhu M et al (2021) Solvent-free synthesis of PEG modified polyurethane solid–solid phase change materials with different Mw for thermal energy storage. Colloid Polym Sci 299(5):835–843

    Article  CAS  Google Scholar 

  17. Kong WB, Fu XW, Liu ZM et al (2017) A facile synthesis of solid–solid phase change material for thermal energy storage. Appl Therm Eng 117:622–628

    Article  CAS  Google Scholar 

  18. Alkan C, Guenther E, Hiebler S et al (2012) Polyurethanes as solid–solid phase change materials for thermal energy storage. Sol Energy 86(6):1761–1769

    Article  CAS  Google Scholar 

  19. Ma Y, Chu X, Li W et al (2012) Preparation and characterization of poly(methyl methacrylate-co-divinylbenzene) microcapsules containing phase change temperature adjustable binary core materials. Sol Energy 86(7):2056–2066

    Article  CAS  Google Scholar 

  20. Ma Y, Chu X, Tang G et al (2012) Adjusting phase change temperature of microcapsules by regulating their core compositions. Mater Lett 82:39–41

    Article  CAS  Google Scholar 

  21. Chen C, Liu W, Wang Z et al (2015) Novel form stable phase change materials based on the composites of polyethylene glycol/polymeric solid–solid phase change material. Sol Energy Mater Sol Cells 134:80–88

    Article  CAS  Google Scholar 

  22. Garrett JT et al (2003) Phase separation of diamine chain-extended poly(urethane) copolymers: FTIR spectroscopy and phase transitions. Polymer 44:2711–2719

    Article  CAS  Google Scholar 

  23. Li F, Hou J, Wei Z et al (1996) Crystallinity and morphology of segmented polyurethanes with different soft-segment length. J Appl Polym Sci 62(4):631–638

    Article  CAS  Google Scholar 

  24. Nakamae K, Nishino T, Asaoka S et al (1996) Microphase separation and surface properties of segmented polyurethane—effect of hard segment content. Int J Adhes Adhes 16(4):233–239

    Article  CAS  Google Scholar 

  25. Mondal S, Hu J (2006) Structural characterization and mass transfer properties of nonporous-segmented polyurethane membrane: influence of the hydrophilic segment content and soft segment melting temperature. J Membr Sci 276(1–2):16–22

    Article  CAS  Google Scholar 

  26. Cakić SM, Ristić IS, Krakovský I et al (2014) Crystallization and thermal properties in waterborne polyurethane elastomers: influence of mixed soft segment block. Mater Chem Phys 144(1–2):31–40

    Article  Google Scholar 

  27. Song X, Gao J, Zhang J (2005) Thermodynamic functions of nanocrystals and its application to the study of phase transformations. Acta Phys Sin 03:1313–1319

    Article  Google Scholar 

  28. Kim JM, Baig C (2016) Communication: role of short chain branching in polymer structure and dynamics. J Chem Phys 144(8):081101

    Article  Google Scholar 

  29. Lee KO et al (2018) Thermal performance of phase change materials (PCM)-enhanced cellulose insulation in passive solar residential building walls. Sol Energy 163:113–121

    Article  Google Scholar 

  30. Hou H, Xu Q, Pang Y et al (2017) Efficient storing energy harvested by triboelectric nanogenerators using a safe and durable all-solid-state sodium-ion battery. Adv Sci (Weinheim) 4(8):1700072

    Article  Google Scholar 

  31. Girouard NM, Xu S, Schueneman GT et al (2016) Site-selective modification of cellulose nanocrystals with isophorone diisocyanate and formation of polyurethane-CNC composites. ACS Appl Mater Interfaces 8(2):1458–1467

    Article  CAS  Google Scholar 

  32. Chattopadhyay DK, Webster DC (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34(10):1068–1133

    Article  CAS  Google Scholar 

  33. Kasmi N, Roso M, Hammami N et al (2017) Microwave-assisted synthesis of isosorbide-derived diols for the preparation of thermally stable thermoplastic polyurethane. Des Monomers Polym 20(1):547–563

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (51608044), the Natural Science Basic Research Program of Shaanxi (2020JQ-366), and the Fundamental Research Funds for the Central University of Chang’an University (300102210207).

Author information

Authors and Affiliations

Authors

Contributions

WS, KW, YF and XW contributed to conceptualization; WS, KW, YF, XW, JS, SW and PC contributed to formal analysis; KW contributed to investigation; WS and KW contributed to methodology; KW contributed to resources; JS, SW and PC contributed to supervision; WS and KW contributed to validation; WS, YF and XW contributed to writing—original draft; WS and KW contributed to writing—review and editing.

Corresponding author

Correspondence to Kun Wei.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, W., Wei, K., Fan, Y. et al. A flexible method for changing the transition temperature of polyurethane solid–solid phase change materials. Polym. Bull. 80, 1873–1891 (2023). https://doi.org/10.1007/s00289-022-04151-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04151-z

Keywords

Navigation