Skip to main content
Log in

Study of dielectric relaxation and charge transport of titanium dioxide-polyvinyl chloride nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Titanium dioxide, TiO2, nanoparticles were prepared using the sol–gel method and mixed in various ratios with polyvinyl chloride (PVC) to create nanocomposite films. All prepared samples were examined using X-ray diffraction (XRD), and the average crystal size of TiO2 was around 50 nm. The dielectric properties of a TiO2/PVC nanocomposite film were thoroughly investigated. The dielectric constant exhibited a relaxation peak, which is attributed to the dynamic glass transition. The ε′ and ε′′ values increase with increasing temperature and decrease with increasing frequency. Moreover, they increased with the addition of TiO2 nanoparticles. The dielectric modulus (Mʹ, Mʹʹ) and electrical conductivity as a function of temperature and frequency were investigated. The frequency dependence of ac conductivity demonstrates that the conduction mechanism is governed by the correlated barrier hopping model. The complex impedance (Z*) of the prepared films was investigated. Relaxation time, activation energy, and other parameters were computed. The findings of this study were compared and discussed with those of similar nanocomposite films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cho S, Choi W (2001) Solid-phase photocatalytic degradation of PVC–TiO 2 polymer composites. J Photochem Photobiol A: Chem 143:221

    CAS  Google Scholar 

  2. Fang L, Y-h Song, X-n. Zheng, S-h Chen, P-h Da, Zheng Q (2010) Influence of lanthanum stearate and calcium/zinc stabilizers on stabilization efficiency of dibutyltin dilaurate to polyvinyl chloride. Chinese J Polym Sci 28:637

    CAS  Google Scholar 

  3. Yoo H, S.-YeopKwak, (2011) TiO2-encapsulating PVC capable of catalytic self-suppression of dioxin emission in waste incineration as an eco-friendly alternative to conventional PVC. Appl Catal B Environ 104:193

    CAS  Google Scholar 

  4. Liu F, Liu H, Li X, Zhao H, Zhu D, Zheng Y, Li C (2012) Nano-TiO2@Ag/PVC film with enhanced antibacterial activities and photocatalytic properties. Appl Surf Sci 258:4667

    CAS  Google Scholar 

  5. Olad A, Behboudi S, Entezami AA (2013) Effect of polyaniline as a surface modifier of TiO 2 nanoparticles on the properties of polyvinyl chloride/TiO 2 nanocomposites. Chinese J Polym Sci 31:481

    CAS  Google Scholar 

  6. Mansour ShA, Elsad RA, Izzularab MA (2016) Dielectric properties enhancement of PVC nanodielectrics based on synthesized ZnO nanoparticles. J Polym Res 23:85

    Google Scholar 

  7. Mahmoud WE, Al-Ghamd AA (2011) The influence of Cd(ZnO) on the structure optical and thermal stabilities of polyvinyl chloride nanocomposites. Poly compos 32:1143–1147

    CAS  Google Scholar 

  8. Abouhaswa AS, Taha TA (2020) Tailoring the optical and dielectric properties of PVC/CuO nanocomposites. Polym Bull 77:6005–6016

    CAS  Google Scholar 

  9. Ebnalwaled AA, Thabet A (2016) Controlling the optical constants of PVC nanocomposite films for optoelectronic applications. Synth Met 220:374–383

    CAS  Google Scholar 

  10. Estabrak T. Abdullah, Asama Naje N (2011) AC electrical and dielectric properties of PVC-MWCNT nanocomposites. Indian J Sci Technol 4:731–735

    Google Scholar 

  11. Abdel-Baset T, Elzayat M, Mahrous S (2016) Characterization and optical and dielectric properties of polyvinyl chloride/silica nanocomposites films. J Polym Sci Int. https://doi.org/10.1155/2016/1707018

    Article  Google Scholar 

  12. Aqib Muzaffar M, Ahamed B, Kalim Deshmukh SK, Pasha K (2020) Dielectric properties and electromagnetic interference shielding studies of nickel oxide and tungsten oxide reinforced polyvinylchloride nanocomposites. Polym-Plast Technol Mater 59:1667–1678

    Google Scholar 

  13. Wu W, Liang S, Shen L, Ding Z, Zheng H, Su W, Wu L (2012) Preparation, characterization and enhanced visible light photocatalytic activities of polyaniline/Bi3NbO7 nanocomposites. J Alloys Comp 520:213

    CAS  Google Scholar 

  14. Ramadoss A, Kim SJ (2013) Vertically aligned TiO2 nanorod arrays for electrochemical supercapacitor. J Alloys Comp 561:262

    CAS  Google Scholar 

  15. Ambade SB, Ambade RB, Mane RS, Lee GW, Shaikh SF, Patil SA (2013) Highly efficient and stable DSSCs of wet-chemically synthesized MoS 2 counter electrode. dalton Transactions. Chem Commun 28:2921

    Google Scholar 

  16. Han B, Kim SJ, Hwang BM, Kim SB, Park KW (2013) Single-crystalline rutile TiO2 nanowires for improved lithium ion intercalation properties. J Power Sources 222:225

    CAS  Google Scholar 

  17. Nakata K, Fujishima A (2012) TiO2 photocatalysis: Design and applications. J Photochem Photobiol C: Photochem Rev 13:169

    CAS  Google Scholar 

  18. Fabrega C, Andreu T, Tarancon A, Flox C, Morata A, Barrio LC, Morante JR (2013) Optimization of surface charge transfer processes on rutile TiO2 nanorods photoanodes for water splitting. Int J Hydrogen Energy 38:2979

    CAS  Google Scholar 

  19. Ding SN, Gao BH, Shan D, Suna YM, Cosnier S (2013) TiO2 nanocrystals electrochemiluminescence quenching by biological enlarged nanogold particles and its application for biosensing. Biosens Bioelectron 39:342

    CAS  PubMed  Google Scholar 

  20. Haider AJ, Jameel ZN, Al-Hussaini IHM (2019) Review on: titanium dioxide applications. Energy procedia 157:17

    CAS  Google Scholar 

  21. Ortiz RP, Facchetti A, Marks TJ (2010) High- k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chem Rev 110:205

    CAS  Google Scholar 

  22. Taha TA, Ismail Z, Elhawary MM (2018) Structural, optical and thermal characterization of PVC/SnO2 nanocomposites. Appl Phys A 124:307

    Google Scholar 

  23. Da Silva MA, Vieira MGA, Maçumoto ACG, Beppu MM (2011) Polyvinylchloride (PVC) and natural rubber films plasticized with a natural polymeric plasticizer obtained through polyesterification of rice fatty acid. Polym Test 30(5):478

    Google Scholar 

  24. Dong Y, Wang Y, Cai T, Kou L, Yang G, Yan Z (2014) Preparation and nitrogen-doping of three-dimensionally ordered macroporous TiO2 with enhanced photocatalytic activity. Ceram Int 40:11213

    CAS  Google Scholar 

  25. Nirmala R, Jeong JW, Navamathavan R, Kim HY (2011) Synthesis and electrical properties of TiO 2 nanoparticles embedded in polyamide-6 nanofibers via electrospinning. Nano-Micro Letters 3(1):56–61

    CAS  Google Scholar 

  26. Lin DJ, Chang CL, Huang FM, Cheng LP (2003) Effect of salt additive on the formation of microporous poly(vinylidene fluoride) membranes by phase inversion from LiClO4/Water/DMF/PVDF system. Polymer 44:413

    CAS  Google Scholar 

  27. Alexander L, Klug HA (1950) Determination of Crystallite Size with the X‐Ray Spectrometer. J Appl Phys 21:137

    CAS  Google Scholar 

  28. Taha TA (2017) Optical and thermogravimetric analysis of Pb3O4/PVC nanocomposites. J Mater Sci: Mater Electron 28:12108

    CAS  Google Scholar 

  29. Elashmawi IS, Hakeem NA, Marei LK, Hanna FF (2010) Structure and performance of ZnO/PVC nanocomposites. Physica B 405:4163–4169

    CAS  Google Scholar 

  30. Alghunaim NS (2018) Structural, thermal, dielectric spectroscopic and AC impedance properties of SiC nanoparticles doped PVK/PVC blend. Results in Physics 9:1136

    Google Scholar 

  31. Mohammed G, El Sayed AM, El-Gamal S (2020) Effect of m nitrates on the optical, dielectric relaxation and porosity of PVC/PMMA Membranes (M = Cd, Co, Cr or Mg). J Inorg Organomet Polym 30:1306

    CAS  Google Scholar 

  32. Ramesh S, Liew C (2013) Dielectric and FTIR studies on blending of [xPMMA–(1−x)PVC] with LiTFSI. Measurement 46:1650

    Google Scholar 

  33. Arya A, Sharma AL (2018) Structural, electrical properties and dielectric relaxations in Na+-ion-conducting solid polymer electrolyte. J Phys: Condensed Mat 30(16):165402

    Google Scholar 

  34. Laurati M, Sotta P, Long DR, Fillot LA, Arbe A, Alegria A, Embs JP, Unruh T, Schneider GJ, Colmenero J (2012) Dynamics of water absorbed in polyamides. Macromolecules 45:1676

    CAS  Google Scholar 

  35. Tsangaris GM, Psarras GC, Kouloumbi N (1998) Electric modulus and interfacial polarization in composite polymeric systems. J Mater Sci 33:2027

    CAS  Google Scholar 

  36. McCrum NG, Read BE, Williams G (1967) An elastic and dielectric effects in polymeric solids. Wiley, New York

    Google Scholar 

  37. Macedo PB, Moynihan CT, Bose R (1972) The role of ionic diffusion in polarisation in vitreous ionic conductors. Phys Chem Glasses 13:171

    CAS  Google Scholar 

  38. Kim JS (2001) Electric modulus spectroscopy of lithium tetraborate (Li2B4O7) single crystal. J Phys Soc Jpn 70:3129

    CAS  Google Scholar 

  39. Fan L, Dang Z, Wei G, Nan CW, Li M (2003) Effect of nanosized ZnO on the electrical properties of (PEO)16LiClO4 electrolytes. Mater Sci Eng B 99:340

    Google Scholar 

  40. Havriliak S, Negami S (1966) A complex plane analysis of α-dispersions in some polymer systems. J Polym Sci C 14:99

    Google Scholar 

  41. Adohi BP, Brosseau C (2009) Dielectric relaxation in particle-filled polymer: Influence of the filler particles and thermal treatments. J Appl Phys 105(5):054108

    Google Scholar 

  42. Fleer G, Stuart MAC, Scheutjens JMHM, Cosgrove T, Vincent B (1993) Polymers at interfaces. Chapman and Hall, London

    Google Scholar 

  43. Jones RA (1999) The dynamics of thin polymer films. Curr Opin Colloid Interface Sci 4:153

    Google Scholar 

  44. Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  45. Adachi K, Hirano H (1998) Slow dielectric relaxation of cis-polyisoprene near the glass transition temperature. Macromolecules 31:3958

    CAS  Google Scholar 

  46. Schönhals A (1993) Relation between main and normal mode relaxations for polyisoprene studied by dielectric spectroscopy. Macromolecules 26:1309

    Google Scholar 

  47. Khalil R (2017) Impedance and modulus spectroscopy of poly(vinyl alcohol)-Mg[ClO4]2 salt hybrid films. Appl Phys A 123:422

    Google Scholar 

  48. Sen S, Choudhary RNP, Pramanik P (2007) Structural and electrical properties of Ca2+-modified PZT electroceramics. Physica B 387:56

    CAS  Google Scholar 

  49. Behera B, Nayak P, Choudhary RNP (2007) Impedance spectroscopy study of NaBa2V5O15 ceramic. J Alloys Compd 436:226

    CAS  Google Scholar 

  50. Delgado A, García-Sanchez MF, M’Peko J-C, Ruiz-Salvador AR, RodríguezGattorno G, Echevarría Y, Fernandez-Gutierrez F (2003) An elementary picture of dielectric spectroscopy in solids: physical basis. J Chem Educ 80:1062

    Google Scholar 

  51. Gerhardt R (1994) Impedance and dielectric spectroscopy revisited: distinguishing localized relaxation from long-range conductivity. J Phys Chem Solids 55:1491

    CAS  Google Scholar 

  52. Cao W, Gerhardt R (1990) Calculation of various relaxation times and conductivity for a single dielectric relaxation process. Solid State Ion 42:213

    CAS  Google Scholar 

  53. Dwivedi RK, Kumar D, Parkash O (2001) Valence compensated perovskite oxide system Ca1− x La x Ti1− x Cr x O3 Part III Impedance spectroscopy. J mater Sci 36(15):3657–65

    CAS  Google Scholar 

  54. Singh P, Singh P, Singh S, Parkash O, Kumar D (2008) Electrical conduction behavior and immittance analysis of Gd and Mn substituted strontium titanate. J Mater Sci 43:989

    CAS  Google Scholar 

  55. Sinha S, Chatterjee SK, Ghosh J, Meikap AK (2017) Analysis of the dielectric relaxation and ac conductivity behavior of polyvinyl alcohol-cadmium selenide nanocomposite films. Polym Compos 38:287

    CAS  Google Scholar 

  56. Macdonald JR (1987) Impedance spectroscopy. Wiley, Newyork, pp 12–23

    Google Scholar 

  57. Almond DP, Hunter CC, West AR (1984) The extraction of ionic conductivities and hopping rates from a.c. conductivity data. J Mater Sci 19:3236

    CAS  Google Scholar 

  58. Jonscher AK (1977) The ‘universal’ dielectric response. Nature 267:673

    CAS  Google Scholar 

  59. Elliot SR (1987) A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Adv Phys 36:135

    Google Scholar 

  60. Pike GE (1972) AC conductivity of scandium oxide and a new hopping model for conductivity. Phys Rev B 6:1572

    CAS  Google Scholar 

  61. Roy AS, Gupta S, Sindhu S, Parveen A, Ramamurthy PC (2013) Dielectric properties of novel PVA/ZnO hybrid nanocomposite films. Compos Part B: Eng 47:314–9

    CAS  Google Scholar 

  62. Schmidbauer E, Schmid-Beurmann P (2004) Electrical conductivity and thermopower of Fe-phosphate compounds with the lazulite-type structure. J Solid State Chem 177:207

    CAS  Google Scholar 

  63. Ben Taher Y, Oueslati A, Maaloul NK, Khirouni K, Gargouri M (2015) Conductivity study and correlated barrier hopping (CBH) conduction mechanism in diphosphate compound. Appl Phys A 120:1537

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abou Elfadl.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel‑Baset, T.A., Abou Elfadl, A. Study of dielectric relaxation and charge transport of titanium dioxide-polyvinyl chloride nanocomposites. Polym. Bull. 79, 10157–10174 (2022). https://doi.org/10.1007/s00289-021-04000-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-04000-5

Keywords

Navigation