Skip to main content
Log in

Screening and characterization of novel lipase producing Bacillus species from agricultural soil with high hydrolytic activity against PBAT poly (butylene adipate co terephthalate) co-polyesters

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The use of poly (butylene adipate-co-terephthalate) (PBAT) has increased widely but PBAT-degrading bacteria have rarely been studied. During this study, we used farm soil (Shaanxi (yuan Jia cun)) to isolate and identify PBAT-degrading bacteria (Bacillus strains). We then accessed the effect of growth factors on PBAT degradation as well as the lipase activity of PBAT-degrading bacteria. Most active strains (SUST B1, SUST B2, and SUST B3) were selected for degradation study. The lipase activity under different pH, temperature, degradation products, and carbon sources was studied. The degradation mechanism was investigated using attenuated total reflection Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis. The results showed that each strain had a significant degrading effect on PBAT. Under certain conditions, the lipase activity of strain SUST B2 was 10.42 U/mL and degraded 10.5% of PBAT films. Results of the study displayed a significant change in PBAT properties throughout the experiment. The pH of the degradation solution also displayed significant reduction throughout the experiment and reached a minimum value at the end of the experiment. The secreted lipase enzyme catalyzed the degradation of ester bonds present in the PBAT structure. Terephthalic acid, 1, 4-butanediol, and adipic acid were the by-products of this reaction. Strains utilize these products as carbon sources hence completely degrading PBAT. The bioremediation of PBAT in the environment can be achieved using these strains.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bond T, Ferrandiz-Mas V, Felipe-Sotelo M, van Sebille E (2018) The occurrence and degradation of aquatic plastic litter based on polymer physicochemical properties: A review. Crit Rev Environ Sci Technol 48(7–9):685–722. https://doi.org/10.1080/10643389.2018.1483155

    Article  Google Scholar 

  2. Akdogan Z, Guven B (2019) Microplastics in the environment: A critical review of current understanding and identification of future research needs, Environ Pollution, vol. 254. Elsevier Ltd, p 113011. https://doi.org/10.1016/j.envpol.2019.113011.

  3. Zhong Y, Godwin P, Jin Y, Xiao H (2020) Biodegradable polymers and green-based antimicrobial packaging materials: a mini-review. Adv Ind Eng Polym Res. https://doi.org/10.1016/j.aiepr.2019.11.002

    Article  Google Scholar 

  4. Li LY et al (2020) Biodegradable polymers: new alternatives using nanocellulose and agroindustrial residues. Microsc Microanal. 79(45):1–4. https://doi.org/10.1017/s1431927620014373

    Article  Google Scholar 

  5. Bambino K, Chu J (2017) Zebrafish in toxicology and environmental health, In: Current topics in developmental biology.

  6. Ferreira FV, Cividanes LS, Gouveia RF, Lona LMF (2019) An overview on properties and applications of poly(butylene adipate-co-terephthalate)–PBAT based composites. Polym Eng Sci 59(s2):E7–E15. https://doi.org/10.1002/pen.24770

    Article  CAS  Google Scholar 

  7. Haider TP, Völker C, Kramm J, Landfester K, Wurm FR (2019) Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew Chem Int Ed 58(1):50–62. https://doi.org/10.1002/anie.201805766

    Article  CAS  Google Scholar 

  8. Geyer R, Jambeck JR, Law KL (2017) Production, use, and the fate of all plastics ever made. Sci Adv 3(7):e1700782. https://doi.org/10.1126/sciadv.1700782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jia H, Zhang M, Weng Y, Zhao Y, Li C, Kanwal A (2021) Degradation of poly(butylene adipate-co-terephthalate) by Stenotrophomonas sp. YCJ1 isolated from farmland soil. J Environ Sci (China) 103:50–58. https://doi.org/10.1016/j.jes.2020.10.001

    Article  CAS  Google Scholar 

  10. Ruggero F, Gori R, Lubello C (2019) Methodologies to assess biodegradation of bioplastics during aerobic composting and anaerobic digestion: a review. Waste Manag Res 37(10):959–975. https://doi.org/10.1177/0734242X19854127

    Article  CAS  PubMed  Google Scholar 

  11. Velzeboer I, Kwadijk CJAF, Koelmans AA (2014) Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes. Environ Sci Technol 48(9):4869–4876. https://doi.org/10.1021/es405721v

    Article  CAS  PubMed  Google Scholar 

  12. Green MR, Sambrook J (2019) Agarose gel electrophoresis. Cold Spring Harb Protoc 2019(1):87–94. https://doi.org/10.1101/pdb.prot100404

    Article  Google Scholar 

  13. Arrieta MP, Samper MD, Aldas M, López J (2017) On the use of PLA-PHB blends for sustainable food packaging applications. Materials (Basel) 10(9):1–26. https://doi.org/10.3390/ma10091008

    Article  CAS  Google Scholar 

  14. Massadeh MI, Sabra FM (2011) Production and characterization of lipase from bacillus stearothermophilus. African J Biotechnol 10(61):13139–13146. https://doi.org/10.4314/ajb.v10i61

    Article  CAS  Google Scholar 

  15. Zhang M, Miao Z, Wang L, Lawson T, Kanwal A (2019) Poly(butylene succinate-co-salicylic acid) copolymers and their effect on promoting plant growth. https://doi.org/10.1098/rsos.190504.

  16. Wei D, Wang H, Xiao H, Zheng A, Yang Y (2015) Morphology and mechanical properties of poly(butylene adipate-co-terephthalate)/potato starch blends in the presence of synthesized reactive compatibilizer or modified poly(butylene adipate-co-terephthalate). Carbohydr Polym 123:275–282. https://doi.org/10.1016/j.carbpol.2015.01.058

    Article  CAS  PubMed  Google Scholar 

  17. Li P, Wang X, Su M, Zou X, Duan L, Zhang H (2020) Characteristics of Plastic Pollution in the Environment: A Review. Bull Environ Contam Toxicol 1:3. https://doi.org/10.1007/s00128-020-02820-1

    Article  CAS  Google Scholar 

  18. Witt U, Einig T, Yamamoto M, Kleeberg I, Deckwer WD, Müller RJ (2001) Biodegradation of aliphatic-aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere 44(2):289–299. https://doi.org/10.1016/S0045-6535(00)00162-4

    Article  CAS  PubMed  Google Scholar 

  19. Aarthy M, Puhazhselvan P, Aparna R, Sebastian A, Kuppuswami M (2018) Growth associated degradation of aliphatic-aromatic copolyesters by Cryptococcus sp. MTCC 5455. Polym Degrad Stab 152:20–28. https://doi.org/10.1016/j.polymdegradstab.2018.03.021

    Article  CAS  Google Scholar 

  20. Biundo A et al (2016) Characterization of a poly(butylene adipate-co-terephthalate)-hydrolyzing lipase from Pelosinus fermentans. Appl Microbiol Biotechnol 100(4):1753–1764. https://doi.org/10.1007/s00253-015-7031-1

    Article  CAS  PubMed  Google Scholar 

  21. Karamanlioglu M, Houlden A, Robson GD (2014) Isolation and characterisation of fungal communities associated with degradation and growth on the surface of poly(lactic) acid (PLA) in soil and compost. Int Biodeterior Biodegrad 95:301–310. https://doi.org/10.1016/j.ibiod.2014.09.006

    Article  CAS  Google Scholar 

  22. Barrier V, Properties A, Roy S (2020) Curcumin Incorporated Poly Butylene, pp 1–15

  23. Kasuya K et al (2009) Characterization of a mesophilic aliphatic-aromatic copolyester-degrading fungus. Polym Degrad Stab 94(8):1190–1196. https://doi.org/10.1016/j.polymdegradstab.2009.04.013

    Article  CAS  Google Scholar 

  24. Souza PMS, Coelho FM, Sommaggio LRD, Marin-Morales MA, Morales AR (2019) Disintegration and biodegradation in soil of PBAT mulch films: influence of the stabilization systems based on carbon black/hindered amine light stabilizer and carbon black/vitamin E. J Polym Environ 27(7):1584–1594. https://doi.org/10.1007/s10924-019-01455-6

    Article  CAS  Google Scholar 

  25. Kijchavengkul T, Auras R, Rubino M, Selke S, Ngouajio M, Fernandez RT (2010) Biodegradation and hydrolysis rate of aliphatic aromatic polyester. Polym Degrad Stab 95(12):2641–2647. https://doi.org/10.1016/j.polymdegradstab.2010.07.018

    Article  CAS  Google Scholar 

  26. Scaffaro R, Maio A, Sutera F, Gulino E, Morreale M (2019) Degradation and recycling of films based on biodegradable polymers: A short review. Polymers (Basel). https://doi.org/10.3390/polym11040651

    Article  Google Scholar 

  27. Weng YX, Jin YJ, Meng QY, Wang L, Zhang M, Wang YZ (2013) Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polym Test 32(5):918–926. https://doi.org/10.1016/j.polymertesting.2013.05.001

    Article  CAS  Google Scholar 

  28. Nakajima-Kambe T, Ichihashi F, Matsuzoe R, Kato S, Shintani N (2009) Degradation of aliphatic-aromatic copolyesters by bacteria that can degrade aliphatic polyesters. Polym Degrad Stab 94(11):1901–1905. https://doi.org/10.1016/j.polymdegradstab.2009.08.006

    Article  CAS  Google Scholar 

  29. Hongdilokkul P, Keeratipinit K, Chawthai S, Hararak B, Seadan M, Suttiruengwong S (2015) A study on properties of PLA/PBAT from blown film process, In: IOP conference series: materials science and engineering, vol. 87, no. 1, doi: https://doi.org/10.1088/1757-899X/87/1/012112.

  30. Mangaraj S, Yadav A, Bal LM, Dash SK, Mahanti NK (2019) Application of biodegradable polymers in food packaging industry: a comprehensive review. J Packag Technol Res 3(1):77–96. https://doi.org/10.1007/s41783-018-0049-y

    Article  Google Scholar 

  31. Webb HK, Arnott J, Crawford RJ, Ivanova EP (2013) Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers (Basel). https://doi.org/10.3390/polym5010001

    Article  Google Scholar 

  32. Polymers | Free full-text | Biomedical applications of biodegradable polyesters | HTML.” https://www.mdpi.com/2073-4360/8/1/20/htm (accessed Dec. 11, 2020).

  33. Herniou-Julien C, Mendieta JR, Gutiérrez TJ (2019) Characterization of biodegradable/non-compostable films made from cellulose acetate/corn starch blends processed under reactive extrusion conditions. Food Hydrocoll. 89:67–79. https://doi.org/10.1016/j.foodhyd.2018.10.024

    Article  CAS  Google Scholar 

  34. Pal AK, Das A, Katiyar V (2016) Chitosan from Muga silkworms ( Antheraea assamensis ) and its influence on thermal degradation behavior of poly (lactic acid) based biocomposite films, 43710: 1–15, https://doi.org/10.1002/app.43710.

  35. Wang L, Zhang M, Lawson T, Kanwal A, Miao Z (2019) Poly(butylene succinate-cosalicylic acid) copolymers and their effect on promoting plant growth. R Soc Open Sci 6(7):1–11. https://doi.org/10.1098/rsos.190504

    Article  CAS  Google Scholar 

  36. Wang F, Wong CS, Chen D, Lu X, Wang F, Zeng EY (2018) Interaction of toxic chemicals with microplastics: a critical review. Water Res 139:208–219. https://doi.org/10.1016/j.watres.2018.04.003

    Article  CAS  PubMed  Google Scholar 

  37. Xu D, Li Y, Yin L, Ji Y, Niu J, Yu Y (2018) Erratum to : electrochemical removal of nitrate in industrial wastewater, 12(3): 11783

  38. De Clerck E, Vanhoutte T, Hebb T, Geerinck J, Devos J, De Vos P (2004) Isolation, characterization, and identification of bacterial contaminants in semifinal gelatin extracts. Appl Environ Microbiol 70(6):3664–3672. https://doi.org/10.1128/AEM.70.6.3664-3672.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hu X, Cebe P, Weiss AS, Omenetto F, Kaplan DL (2012) Protein-based composite materials. Mater Today 15(5):208–215. https://doi.org/10.1016/S1369-7021(12)70091-3

    Article  CAS  Google Scholar 

  40. Northwest Association for Biomedical Research (2012) “LESSON 9: Analyzing DNA Sequences and DNA Barcoding,” Adv Bioinforma Genet Res, (October): 38, [Online]. Available: https://www.nwabr.org/teacher-center/advanced-bioinformatics-genetic-research#lessons.

  41. Lee PY, Costumbrado J, Hsu CY, Kim YH (2012) Agarose gel electrophoresis for the separation of DNA fragments, J Vis Exp, (62): 20894, doi: https://doi.org/10.3791/3923.

  42. Muroi F et al (2017) Characterization of a poly(butylene adipate-co-terephthalate) hydrolase from the aerobic mesophilic bacterium Bacillus pumilus. Polym Degrad Stab 137:11–22. https://doi.org/10.1016/j.polymdegradstab.2017.01.006

    Article  CAS  Google Scholar 

  43. Herrera R, Franco L, Rodríguez-Galán A, Puiggalí J (2002) Characterization and degradation behavior of poly(butylene adipate-co-terephthalate)s. J Polym Sci Part A Polym Chem 40(23):4141–4157. https://doi.org/10.1002/pola.10501

    Article  CAS  Google Scholar 

  44. Bradu C et al (2019) Pd-Cu catalysts supported on anion exchange resin for the simultaneous catalytic reduction of nitrate ions and reductive dehalogenation of organochlorinated pollutants from water. Appl Catal A Gen 570:120–129. https://doi.org/10.1016/j.apcata.2018.11.002

    Article  CAS  Google Scholar 

  45. Thermogravimetric T, Family I (2010) A beginner’s guide to R. Choice Rev Online 47(11):47–6310. https://doi.org/10.5860/choice.47-6310

    Article  Google Scholar 

  46. Hall BG (2013) Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 30(5):1229–1235. https://doi.org/10.1093/molbev/mst012

    Article  CAS  PubMed  Google Scholar 

  47. Kubowicz S, Booth AM (2017) Biodegradability of plastics: challenges and misconceptions. Environ Sci Technol 51(21):12058–12060. https://doi.org/10.1021/acs.est.7b04051

    Article  CAS  PubMed  Google Scholar 

  48. Tham WH, Wahit MU, Abdul Kadir MR, Wong TW, Hassan O (2016) Polyol-based biodegradable polyesters: a short review. Rev Chem Eng 32(2):201–221. https://doi.org/10.1515/revce-2015-0035

    Article  CAS  Google Scholar 

  49. Prajapati SK, Jain A, Jain A, Jain S (2019) Biodegradable polymers and constructs: a novel approach in drug delivery. Eur. Polym. J. 120(March):109191. https://doi.org/10.1016/j.eurpolymj.2019.08.018

    Article  CAS  Google Scholar 

  50. Zhang YM, Sun YQ, Wang ZJ, Zhang J (2013) Degradation of terephthalic acid by a newly isolated strain of Arthrobacter sp.0574. S Afr J Sci 109(7–8):1–5. https://doi.org/10.1590/sajs.2013/20120019

    Article  CAS  Google Scholar 

  51. Mok PS, Ch’ng DHE, Ong SP, Numata K, Sudesh K (2016) Characterization of the depolymerizing activity of commercial lipases and detection of lipase-like activities in animal organ extracts using poly(3-hydroxybutyrate-co-4-hydroxybutyrate) thin film. AMB Express. https://doi.org/10.1186/s13568-016-0230-z

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tham WH, Wahit MU, Abdul Kadir MR, Wong TW, Hassan O (2016) Polyol-based biodegradable polyesters: a short review. Rev Chem Eng 32(2):201–221. https://doi.org/10.1515/revce-2015-0035

    Article  CAS  Google Scholar 

  53. Garaleh M, Lahcini M, Kricheldorf HR, Weidner SM (2009) Syntheses of aliphatic polyesters catalyzed by lanthanide triflates. J Polym Sci Part A Polym Chem 47(1):170–177. https://doi.org/10.1002/pola.23136

    Article  CAS  Google Scholar 

  54. Rujnić-Sokele M, Pilipović A (2017) Challenges and opportunities of biodegradable plastics: a mini review. Waste Manag Res 35(2):132–140. https://doi.org/10.1177/0734242X16683272

    Article  PubMed  Google Scholar 

  55. Costa ARM, Reul LTA, Sousa FM, Ito EN, Carvalho LH, Canedo EL (2018) Degradation during processing of vegetable fiber compounds based on PBAT/PHB blends. Polym Test 69:266–275. https://doi.org/10.1016/j.polymertesting.2018.05.031

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

kanwal, A., Zhang, M., Sharaf, F. et al. Screening and characterization of novel lipase producing Bacillus species from agricultural soil with high hydrolytic activity against PBAT poly (butylene adipate co terephthalate) co-polyesters. Polym. Bull. 79, 10053–10076 (2022). https://doi.org/10.1007/s00289-021-03992-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03992-4

Keywords

Navigation