Skip to main content
Log in

Amino acid-metal phosphate hybrid nanoflowers (AaHNFs): their preparation, characterization and anti-oxidant capacities

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Reactive oxygen species like hydrogen peroxide have positive roles in vivo systems such as phagocytosis, intercellular signal transfer, regulation of cell growth, and the synthesis of important biological compounds. Nanostructures can exhibit increased redox and radical scavenging activities compared to the free form with peroxidase-like activities. This work presents the synthesis and characterization of amino acid-metal phosphate hybrid nanoflowers (AaHNFs) and their potential as a radical scavenger and anti-oxidant. The AaHNFs were synthesized using some metal ions (Cu2+, Mn2+, Ni2+, Co2+, and Zn2+) and selected amino acids (His, Cys, Asn, and Asp) which contain an imidazole ring, sulfhydryl, carboxamide, and carboxylate groups. Synthesized AaHNFs were characterized by their morphology and chemical point of view by using different techniques such as SEM, EDX, FTIR and XRD. Their peroxidase like activities were determined. Using the principle of Fenton's reaction, AaHNFs were found to be exhibitinga more effective peroxidase-like activity than free amino acids. We applied different analytical measurement methods such as hydrogen peroxide scavenging activity assay of AaHNFs and the assays of DPPH and ABTS radical scavenging activities to determine the anti-oxidant capacities of AaHNFs. AaHNFs can be evaluated as an effective anti-oxidant scavenger material due to their superior properties. This new type of HNFs can be exploited as a natural anti-oxidant in various potential applications related to fields such as biosensing, bioassay, biomedicine, pharmaceutics and biocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Inupakutika MA, Sengupta S, Devireddy AR, Azad RK, Mittler R (2016) The evolution of reactive oxygen species metabolism. J Exp Bot 67(21):5933–5943. https://doi.org/10.1093/jxb/erw382

    Article  CAS  PubMed  Google Scholar 

  2. Koltover V (2018) Antioxidant biomedicine: from chemistry of free-radicals to reliability of biological systems. Rese Med Eng Sci. https://doi.org/10.31031/RMES.2018.03.000565

    Article  Google Scholar 

  3. Ye F, Astete CE, Sabliov CM (2017) Entrapment and delivery of α-tocopherol by a self-assembled, alginate-conjugated prodrug nanostructure. Food Hydrocoll 72:62–72. https://doi.org/10.1016/j.foodhyd.2017.05.032

    Article  CAS  Google Scholar 

  4. Souto EB, Severino P, Basso R, Santana MHA (2013) Encapsulation of antioxidants in gastrointestinal-resistant nanoparticulate carriers. Methods Mol Biol 1028:37–46. https://doi.org/10.1007/978-1-62703-475-3_3

    Article  CAS  PubMed  Google Scholar 

  5. Valgimigli L, Baschieri A, Amorati R (2018) Antioxidant activity of nanomaterials. J Mater Chem B 6(14):2036–2051. https://doi.org/10.1039/C8TB00107C

    Article  CAS  PubMed  Google Scholar 

  6. Ge J, Lei J, Zare RN (2012) Protein-Inorganic hybrid nanoflowers. Nat Nanotechnol 7(7):428–432. https://doi.org/10.1038/nnano.2012.80

    Article  CAS  PubMed  Google Scholar 

  7. Fang X, Zhang C, Qian X, Yu D (2018) Self-assembled 2,4-dichlorophenol hydroxylase-inorganic hybrid nanoflowers with enhanced activity and stability. RSC Adv 8(37):20976–20981. https://doi.org/10.1039/C8RA02360C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu J, Chen X, Jiang M, Wang A, Yang L, Pei X, Zhang P, Gang Wu, S. (2018) Efficient promiscuous knoevenagel condensation catalyzed by papain confined in Cu 3 (PO 4) 2 nanoflowers. RSC Adv 8(5):2357–2364. https://doi.org/10.1039/C7RA12940H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Altinkaynak C (2020) Hemoglobin-Metal2+ phosphate nanoflowers with enhanced peroxidase-like activities and their performance in visual detection of hydrogen peroxide. New J Chem. https://doi.org/10.1039/D0NJ04989A

    Article  Google Scholar 

  10. Altinkaynak C, Tavlasoglu S, Kalin R, Sadeghian N, Ozdemir H, Ocsoy I, Özdemir N (2017) A hierarchical assembly of flower-like hybrid Turkish black radish peroxidase-Cu2+ nanobiocatalyst and its effective use in dye decolorization. Chemosphere 182:122–128. https://doi.org/10.1016/j.chemosphere.2017.05.012

    Article  CAS  PubMed  Google Scholar 

  11. Dayan S, Altinkaynak C, Kayaci Nilgün, Doğan ŞD, Özdemir N, KalayciogluOzpozan N (2020) Hybrid nanoflowers bearing tetraphenylporphyrin assembled on copper(II) or cobalt(II) inorganic material: A green efficient catalyst for hydrogenation of nitrobenzenes in water. Appl Organometal Chem. 34:e5381. https://doi.org/10.1002/aoc.5381

    Article  CAS  Google Scholar 

  12. Zhu P, Wang Y, Li G, Liu K, Liu Y, He J, Lei J (2019) Preparation and application of a chemically modified laccase and copper phosphate hybrid flower-like biocatalyst. Biochem Eng J 144:235–243. https://doi.org/10.1016/j.bej.2019.01.020

    Article  CAS  Google Scholar 

  13. Li Y, Wu H, Su Z (2020) Enzyme-based hybrid nanoflowers with high performances for biocatalytic, biomedical, and environmental applications. Coord Chem Rev 416:213342. https://doi.org/10.1016/j.ccr.2020.213342

    Article  CAS  Google Scholar 

  14. Huang Y, Ran X, Lin Y, Ren J, Qu X (2015) Self-assembly of an organic-inorganic hybrid nanoflower as an efficient biomimetic catalyst for self-activated tandem reactions. Chem Commun (Camb) 51(21):4386–4389. https://doi.org/10.1039/c5cc00040h

    Article  CAS  Google Scholar 

  15. Noma SAA, Yılmaz BS, Ulu A, Özdemir N, Ateş B (2020) Development of L-Asparaginase@hybrid nanoflowers (ASNase@HNFs) reactor system with enhanced enzymatic reusability and stability. Catal Lett. https://doi.org/10.1007/s10562-020-03362-1

    Article  Google Scholar 

  16. Baker YR, Chen J, Brown J, El-Sagheer AH, Wiseman P, Johnson E, Goddard P, Brown T (2018) Preparation and characterization of manganese, cobalt and zinc DNA nanoflowers with tuneable morphology, DNA content and size. Nucleic Acids Res 46(15):7495–7505. https://doi.org/10.1093/nar/gky630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chaix A, Cueto-Diaz E, Delalande A, Knezevic N, Midoux P, Durand J-O, Pichon C, Cunin F (2019) Amino-acid functionalized porous silicon nanoparticles for the delivery of PDNA. RSC Adv 9(55):31895–31899. https://doi.org/10.1039/C9RA05461H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Park KS, Batule BS, Chung M, Kang KS, Park TJ, Kim MI, Park HG (2017) A simple and eco-friendly one-pot synthesis of nuclease-resistant DNA–inorganic hybrid nanoflowers. J Mater Chem B 5(12):2231–2234. https://doi.org/10.1039/C6TB03047E

    Article  CAS  PubMed  Google Scholar 

  19. Wei T, Du D, Zhu M-J, Lin Y, Dai Z (2016) An improved ultrasensitive enzyme-linked immunosorbent assay using hydrangea-like antibody-enzyme-inorganic three-in-one nanocomposites. ACS Appl Mater Interfaces 8(10):6329–6335. https://doi.org/10.1021/acsami.5b11834

    Article  CAS  PubMed  Google Scholar 

  20. Altinkaynak C, Baldemi̇r A, Özdemi̇r N, Yilmaz V, Öçsoy İ (2020) Kudret Narı (Momordica charantia Descourt) Meyvesinden Saflaştırılan Peroksidaz Enzimi Kullanılarak Hibrit Nano Çiçekler Sentezlenmesi ve Direct blue 1 Gideriminde Kullanılabilirlikleri. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 9(2):573–583. https://doi.org/10.17798/bitlisfen.603452

    Article  Google Scholar 

  21. Altinkaynak C, Ildiz N, Baldemi̇r A, Özdemi̇r N, Yilmaz V, Öçsoy İ (2019) Synthesis of Organic-Inorganic Hybrid Nanoflowers Using Trigonella Foenum-Graecum Seed Extract and Investigation of Their Anti-Microbial Activity. Derim. https://doi.org/10.16882/derim.2019.549151

    Article  Google Scholar 

  22. Wu Z-F, Wang Z, Zhang Y, Ma Y-L, He C-Y, Li H, Chen L, Huo Q-S, Wang L, Li Z-Q (2016) Amino acids-incorporated nanoflowers with an intrinsic peroxidase-like activity. Sci Rep. https://doi.org/10.1038/srep22412

    Article  PubMed  PubMed Central  Google Scholar 

  23. Altinkaynak C, Gulmez C, Atakisi O, Özdemir N (2020) Evaluation of organic-inorganic hybrid nanoflower’s enzymatic activity in the presence of different metal ions and organic solvents. Int J Biol Macromol 164:162–171. https://doi.org/10.1016/j.ijbiomac.2020.07.118

    Article  CAS  PubMed  Google Scholar 

  24. Shi Y, Liu L, Yu Y, Long Y, Zheng H (2018) Acidic amino acids: a new-type of enzyme mimics with application to biosensing and evaluating of antioxidant behaviour. Spectrochim Acta Part A Mol Biomol Spectrosc 201:367–375. https://doi.org/10.1016/j.saa.2018.05.024

    Article  CAS  Google Scholar 

  25. Stone DL, Smith DK, Whitwood AC (2004) Copper amino-acid complexes–towards encapsulated metal centres. Polyhedron 23(10):1709–1717. https://doi.org/10.1016/j.poly.2004.04.001

    Article  CAS  Google Scholar 

  26. Chandra A, Singh M (2018) Biosynthesis of amino acid functionalized silver nanoparticles for potential catalytic and oxygen sensing applications. Inorg Chem Front 5(1):233–257. https://doi.org/10.1039/C7QI00569E

    Article  CAS  Google Scholar 

  27. Singh D, Singh SK, Atar N, Krishna V (2016) amino acid functionalized magnetic nanoparticles for removal of Ni(II) from aqueous solution. J Taiwan Inst Chem Eng 67:148–160. https://doi.org/10.1016/j.jtice.2016.06.017

    Article  CAS  Google Scholar 

  28. Sun H, Zhao A, Gao N, Li K, Ren J, Qu X (2015) Deciphering a nanocarbon-based artificial peroxidase: chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew Chem Int Ed 54(24):7176–7180. https://doi.org/10.1002/anie.201500626

    Article  CAS  Google Scholar 

  29. Stanila A, Marcu A, Rusu D, Rusu M, David L (2007) Spectroscopic studies of some copper(II) complexes with amino acids. J Mol Struct 834–836:364–368. https://doi.org/10.1016/j.molstruc.2006.11.048

    Article  CAS  Google Scholar 

  30. Gatlin CL, Turecek F, Vaisar T (2020) Copper(II) amino acid complexes in the gas phase https://pubs.acs.org/doi/pdf/https://doi.org/10.1021/ja00117a043 (accessed Dec 28, 2020). https://doi.org/10.1021/ja00117a043

  31. Baran EJ, Viera I, Torre MH (2007) Vibrational Spectra of the Cu(II) Complexes of l-Asparagine and l-Glutamine. Spectrochim Acta Part A Mol Biomol Spectrosc 66(1):114–117. https://doi.org/10.1016/j.saa.2006.01.052

    Article  CAS  Google Scholar 

  32. Aydemir D, Gecili F, Özdemir N, NurayUlusu N (2020) Synthesis and characterization of a triple enzyme-inorganic hybrid nanoflower (TrpE@ihNF) as a combination of three pancreatic digestive enzymes amylase, protease and lipase. J Biosci Bioeng 129(6):679–686. https://doi.org/10.1016/j.jbiosc.2020.01.008

    Article  CAS  PubMed  Google Scholar 

  33. Altinkaynak C, Kocazorbaz E, Özdemir N, Zihnioglu F (2018) Egg white hybrid nanoflower (EW-HNF) with biomimetic polyphenol oxidase reactivity: synthesis, characterization and potential use in decolorization of synthetic dyes. Int J Biol Macromol 109:205–211. https://doi.org/10.1016/j.ijbiomac.2017.12.072

    Article  CAS  PubMed  Google Scholar 

  34. Batule BS, Park KS, Gautam S, Cheon HJ, Kim MI, Park HG (2019) Intrinsic peroxidase-like activity of sonochemically synthesized protein copper nanoflowers and its application for the sensitive detection of glucose. Sens Actuators, B Chem 283:749–754. https://doi.org/10.1016/j.snb.2018.12.028

    Article  CAS  Google Scholar 

  35. Shimazaki Y, Takani M, Yamauchi O (2009) Metal complexes of amino acids and amino acid side chain groups structures and properties. Dalton Trans 38:7854–7869. https://doi.org/10.1039/B905871K

    Article  Google Scholar 

  36. Zhu J, Wen M, Wen W, Du D, Zhang X, Wang S, Lin Y (2018) Recent progress in biosensors based on organic-inorganic hybrid nanoflowers. Biosens Bioelectron 120:175–187. https://doi.org/10.1016/j.bios.2018.08.058

    Article  CAS  PubMed  Google Scholar 

  37. Sharma N, Parhizkar M, Cong W, Mateti S, Kirkland A, Puri M, Sutti A (2017) Metal ion type significantly affects the morphology but not the activity of lipase–metal–phosphate nanoflowers. RSC Adv 7(41):25437–25443. https://doi.org/10.1039/C7RA00302A

    Article  CAS  Google Scholar 

  38. Lloyd RV, Hanna PM, Mason RP (1997) The origin of the hydroxyl radical oxygen in the fenton reaction. Free Radical Biol Med 22(5):885–888. https://doi.org/10.1016/S0891-5849(96)00432-7

    Article  CAS  Google Scholar 

  39. Zhang B, Li P, Zhang H, Li X, Tian L, Wang H, Chen X, Ali N, Ali Z, Zhang Q (2016) Red-blood-cell-like BSA/Zn3(PO4)2 Hybrid particles: preparation and application to adsorption of heavy metal ions. Appl Surf Sci 366:328–338. https://doi.org/10.1016/j.apsusc.2016.01.074

    Article  CAS  Google Scholar 

  40. Erdem HÜ, Kalın R, Özdemir N, Özdemir H (2015) Purification and biochemical characterization of peroxidase isolated from white cabbage (Brassica oleracea var capitata f. alba). Int J Food Properties 18:2099–2109. https://doi.org/10.1080/10942912.2014.963868

    Article  CAS  Google Scholar 

  41. Ruch RJ, Cheng S-J, Klauning JE (1989) Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from chinese green tea. Carcinogenesis 10(6):1003–1008

    Article  CAS  Google Scholar 

  42. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181(4617):1199–1200. https://doi.org/10.1038/1811199a0

    Article  CAS  Google Scholar 

  43. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol Med 26(9):1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  CAS  Google Scholar 

  44. Zhuang J, Young AP, Tsung C-K (2017) Integration of biomolecules with metal-organic frameworks. Small 13(32):1700880. https://doi.org/10.1002/smll.201700880

    Article  CAS  Google Scholar 

  45. Bryszewska M, Shcharbin D, Halets-Bui I, Abashkin V, Dzmitruk V, Loznikova S, Odabaşı M, Acet Ö, Önal B, Özdemir N, Shcharbina N (2019) Hybrid metal-organic nanoflowers and their application in biotechnology and medicine. Colloids Surf, B 182:110354. https://doi.org/10.1016/j.colsurfb.2019.110354

    Article  CAS  Google Scholar 

  46. Hemnani T, Parihar M (1998) Reactive oxygen species and oxidative DNA damage. Indian J Physiol Pharmacol 42:440–452

    CAS  PubMed  Google Scholar 

  47. Hertadi R, Amari MMS, Ratnaningsih E (2020) Enhancement of antioxidant activity of levan through the formation of nanoparticle systems with metal ions. Heliyon 6(6):e04111. https://doi.org/10.1016/j.heliyon.2020.e04111

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kim J-H, Jang H-J, Cho W-Y, Yeon S-J, Lee C-H (2020) In vitro antioxidant actions of sulfur-containing amino acids. Arab J Chem 13(1):1678–1684. https://doi.org/10.1016/j.arabjc.2017.12.036

    Article  CAS  Google Scholar 

  49. Aruoma OI, Halliwell B, Hoey BM, Butler J (1988) The antioxidant action of taurine, hypotaurine and their metabolic precursors. Biochem J 256(1):251–255. https://doi.org/10.1042/bj2560251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Olszowy M, Dawidowicz AL (2018) Is it possible to use the DPPH and ABTS methods for reliable estimation of antioxidant power of colored compounds? Chem Pap 72(2):393–400. https://doi.org/10.1007/s11696-017-0288-3

    Article  CAS  Google Scholar 

  51. Guidea A, Zăgrean-Tuza C, Moț AC, Sârbu C (2020) Comprehensive evaluation of radical scavenging, reducing power and chelating capacity of free proteinogenic amino acids using spectroscopic assays and multivariate exploratory techniques. Spectrochim Acta Part A Mol Biomol Spectrosc 233:118158. https://doi.org/10.1016/j.saa.2020.118158

    Article  CAS  Google Scholar 

  52. Nimse SB, Pal D (2015) Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv 5(35):27986–28006. https://doi.org/10.1039/C4RA13315C

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Erciyes University Scientific Research Projects Unit (Grant number FBA-2017–7311).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Özdemir.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5181 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özdemir, N., Altinkaynak, C., Türk, M. et al. Amino acid-metal phosphate hybrid nanoflowers (AaHNFs): their preparation, characterization and anti-oxidant capacities. Polym. Bull. 79, 9697–9716 (2022). https://doi.org/10.1007/s00289-021-03973-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03973-7

Keywords

Navigation