Skip to main content
Log in

Investigations into Ag nanoparticles–carbon–poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) composite: morphological, structural, optical, and electrical characterization

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The incorporation of different materials can improve the properties of conductive polymers to become composites. This paper studies the morphological, structural, optical, and electrical effects of adding different weight ratios of silver nanoparticles (Ag NPs)-carbon (C) mixture into poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) polymer by a low-cost and straightforward method. The thin films are prepared by drop-casting the prepared composite onto silicon substrates. Transmission electron microscopy shows Ag NPs embedded into the carbon. Field emission scanning electron microscopy images show increased Ag NPs-carbon particle size in PFO. The weight ratio increases due to aggregation, consistent with decreasing band gap trend from the Tauc plot. Ultraviolet–visible (UV–Vis) spectroscopy shows a redshift pattern of the central peak of PFO as the weight ratio increases. Photoluminescence and Raman spectra show that Ag NPs-carbon mixture increases β-phase percentage in PFO due to poor solvent effect. Lastly, the 10% Ag NPs-carbon-PFO sample exhibits the highest electrical conductivity among the three samples studied. A proposed schematic diagram shows how Ag NPs-C particles influence the morphology of the PFO chain and electrical properties of PFO-Ag NPs-C composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Irimia-Vladu M et al (2010) Biocompatible and biodegradable materials for organic field-effect transistors. Adv Func Mater 20(23):4069–4076

    CAS  Google Scholar 

  2. Bajpai M, Srivastava R, Kamalasanan MN, Tiwari RS, Chand S (2010) Charge transport and microstructure in PFO:MEH-PPV polymer blend thin films. Synth Met 160(15–16):1740–1744

    CAS  Google Scholar 

  3. Liang J et al (2016) Improving efficiency and color purity of poly(9,9-dioctylfluorene) through addition of a high boiling-point solvent of 1-chloronaphthalene. Nanotechnology 27(28):284001

    PubMed  Google Scholar 

  4. Jumali MHH, Al-Asbahi BA, Yap CC, Salleh MM, Al-Salhi MS (2012) Optoelectronic property enhancement of conjugated polymer in poly(9,9′-di-n-octylfluorenyl-2.7-diyl)/titania nanocomposites. Thin Solid Films 524:257–262

    CAS  Google Scholar 

  5. Brenner P, Fleig LM, Liu X, Welle A, Brse S, Lemmer U (2015) Degradation mechanisms of polyfluorene-based organic semiconductor lasers under ambient and oxygen-free conditions. J Polym Sci Part B: Polym Phys 53(15):1029–1034. https://doi.org/10.1002/polb.23733

    Article  CAS  Google Scholar 

  6. Pourhashem S et al (2020) Polymer/Inorganic nanocomposite coatings with superior corrosion protection performance: a review. J Ind Eng Chem 88:29–57

    CAS  Google Scholar 

  7. Khan A et al (2018) Polymer–inorganic nanocomposite and biosensors. In: Khan A, Jawaid M, Khan AAP, Asiri AM (eds) Electrically conductive polymer and polymer composites. Wiley, New Jersey, p 247

    Google Scholar 

  8. Dutta K (2017) Polymer-inorganic nanocomposites for polymer electrolyte membrane fuel cells. In: Yang Y, Zhang A, Lin Z (eds) Polymer-engineered nanostructures for advanced energy applications. Springer, Cham, pp 577–606

    Google Scholar 

  9. Devaki SJ, Ramakrishnan R (2019) Nanostructured semiconducting polymer inorganic hybrid composites for opto-electronic applications. In: Aliofkhazraei M (ed) Advances in nanostructured composites: applications of nanocomposites. CRC Press, Boca Raton

    Google Scholar 

  10. Yang SH, Rendu PL, Nguyen TP, Hsu CS (2007) Fabrication of MEH-PPV/SiO2 and MEH-PPV/TiO2 nanocomposites with enhanced luminescent stabilities. Rev Adv Mater Sci 15(2):144–149

    CAS  Google Scholar 

  11. Ibrahim S, Ahmad R, Johan MR (2012) Conductivity and optical studies of plasticized solid polymer electrolytes doped with carbon nanotube. J Lumin 132(1):147–152

    CAS  Google Scholar 

  12. Khan A, Inamuddin, Jain RK, Luqman M, Asiri AM (2018) Development of sulfonated poly(vinyl alcohol)/aluminium oxide/graphene based ionic polymer-metal composite (IPMC) actuator. Sens Actuators A: Phys 280:114–124

    CAS  Google Scholar 

  13. Beenish, Inamuddin, Asiri AM (2017) Electrospun polyaniline/polyvinyl alcohol/multiwalled carbon nanotubes nanofibers as promising bioanode material for biofuel cells. J Electroanaly Chem 789: 181-187

  14. Siddiqui MTH et al (2018) Synthesis of magnetic carbon nanocomposites by hydrothermal carbonization and pyrolysis. Environ Chem Lett 16(3):821–844

    CAS  Google Scholar 

  15. Pickup JC, Zhi ZL, Khan F, Saxl T, Birch DJS (2008) Nanomedicine and its potential in diabetes research and practice. Diabetes/Metab Res Rev 24(8):604–610

    CAS  Google Scholar 

  16. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760

    CAS  PubMed  Google Scholar 

  17. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668

    CAS  PubMed  Google Scholar 

  18. Christopher P, Xin H, Linic S (2011) Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat Chem 3(6):467–472

    CAS  PubMed  Google Scholar 

  19. Su YK (2011) 602 - Nitride-Based LEDs and Superluminescent LEDs. In: Bhattacharya P, Fornari R, Kamimura H (eds) Comprehensive semiconductor science and technology. Elsevier, Amsterdam, pp 28–100

    Google Scholar 

  20. Palem RR, Ganesh SD, Saha N, Kronek J, Sáha P (2018) Green’ synthesis of silver polymer nanocomposites of poly (2-isopropenyl-2- oxazoline-co- N-vinylpyrrolidone) and its catalytic activity. J Polym Res 25(7):152

    Google Scholar 

  21. Wen J et al (2019) Fabrication of high performance printed flexible conductors by doping of polyaniline nanomaterials into silver paste. J Mater Chem C 7(5):1188–1197. https://doi.org/10.1039/C8TC05391J

    Article  CAS  Google Scholar 

  22. Palmer RJ (2001) Polyamides, plastics. In: Mark HF (ed) Encyclopedia of polymer science and technology. Wiley, New Jersey, pp 618–642

    Google Scholar 

  23. Hielscher T (2007) Ultrasonic production of nano-size dispersions and emulsions

  24. Rahaman M et al (2017) A new insight in determining the percolation threshold of electrical conductivity for extrinsically conducting polymer composites through different sigmoidal models. Polymers 9(10):527

    PubMed Central  Google Scholar 

  25. Rivière L, Lonjon A, Dantras E, Lacabanne C, Olivier P, Gleizes NR (2016) Silver fillers aspect ratio influence on electrical and thermal conductivity in PEEK/Ag nanocomposites. Eur Polym J 85:115–125

    Google Scholar 

  26. Blinova NV, Stejskal J, Trchová M, Sapurina I, Ćirić-Marjanović G (2009) The oxidation of aniline with silver nitrate to polyaniline–silver composites. Polymer 50(1):50–56

    CAS  Google Scholar 

  27. de Oliveira AD, Beatrice CA (2018) Polymer nanocomposites with different types of nanofiller. In: Sivasankaran S (ed) Nanocomposites-recent evolutions. IntechOpen, London, pp 103–104

    Google Scholar 

  28. Lim WF, Quah HJ, Hassan Z (2016) Effects of annealing temperature on optical, morphological, and electrical characteristics of polyfluorene-derivative thin films on ITO glass substrate. Appl Opt 55(6):1198–1205

    CAS  PubMed  Google Scholar 

  29. Anandalakshmi K, Venugobal J, Ramasamy V (2016) Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl Nanosci 6(3):399–408

    CAS  Google Scholar 

  30. Bai Z et al (2016) Quantitative study on β-phase heredity based on poly(9,9-dioctylfluorene) from solutions to films and the effect on hole mobility. J Phys Chem C 120(49):27820–27828

    CAS  Google Scholar 

  31. Perevedentsev A, Chander N, Kim JS, Bradley DD (2016) Spectroscopic properties of poly(9,9-dioctylfluorene) thin films possessing varied fractions of beta-phase chain segments: enhanced photoluminescence efficiency via conformation structuring. J Polym Sci B Polym Phys 54(19):1995–2006

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Al-Asbahi BA, Jumali MHH, Al-Gaashani R (2014) Efficient charge transfer mechanism in polyfluorene/ZnO nanocomposite thin films. J Nanomater 2014:1–8

    Google Scholar 

  33. Paramelle D, Sadovoy A, Gorelik S, Free P, Hobley J, Fernig DG (2014) A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst 139(19):4855–4861

    CAS  PubMed  Google Scholar 

  34. Pandey J et al (2014) Silver nanoparticles synthesized by pulsed laser ablation: as a potent antibacterial agent for human enteropathogenic gram-positive and gram-negative bacterial strains. Appl Biochem Biotech 173(4):1021–1031

    Google Scholar 

  35. Arunachalam PK, Annamalai DSK (2013) Chrysopogon zizanioides aqueous extract mediated synthesis of crystalline silver & gold nanoparticles for biomedical applications. Int J Nanomed 8:2375–2384

    Google Scholar 

  36. Maragoni V et al (2013) A novel green synthesis of silver nanoparticles using gum karaya: characterization, antimicrobial and catalytic activity studies. J Clust Sci 25(2):409–422

    Google Scholar 

  37. Mohammad SM, Hassan Z, Ahmed NM, Al-Hardan NH, Bououdina M (2014) Fabrication of low cost UV photo detector using ZnO nanorods grown onto nylon substrate. J Mater Sci Mater Electron 26(3):1322–1331

    Google Scholar 

  38. Rajamanickam S, Mohammad SM, Hassan Z (2020) Effect of substrates on structural, morphological, optical and electrical characteristics on poly (9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) thin films. ECS J Solid State Sci Technol 9(2):026002

    Google Scholar 

  39. Jumali MHH, Al-Asbahi B, Yap C, Salleh MM, Al-Salhi M (2013) Optical Properties of Poly(9,9’-di-n-octylfluorenyl-2.7-diyl)/amorphous SiO2 nanocomposite thin films. Sains Malays 42:1151–1157

    Google Scholar 

  40. Canulescu S et al (2014) Band gap structure modification of amorphous anodic Al oxide film by Ti-alloying. Appl Phys Lett 104(12):121910

    Google Scholar 

  41. Wang Y, Mo J, Cai W, Yao L, Zhang L (2001) Synthesis of nano-AgI arrays and their optical properties. J Mater Res 16(4):990–992

    CAS  Google Scholar 

  42. Aziz SB, Mamand SM, Saed SR, Abdullah RM, Hussein SA (2017) New method for the development of plasmonic metal-semiconductor interface layer: polymer composites with reduced energy band gap. J Nanomater 2017:1–9

    Google Scholar 

  43. Quinten M (2011) Densely packed systems. Optical properties of nanoparticle systems. Wiley, New Jersey, pp 393–410

    Google Scholar 

  44. Bansal AK, Ruseckas A, Shaw PE, Samuel IDW (2010) Fluorescence quenchers in mixed phase polyfluorene films. J Phys Chem C 114(41):17864–17867

    CAS  Google Scholar 

  45. Liu C, Wang Q, Tian H, Liu J, Geng Y, Yan DJM (2013) Morphology and structure of the β phase crystals of monodisperse polyfluorenes. Macromolecules 46(8): 3025–3030

    CAS  Google Scholar 

  46. Ahmad FH, Hassan Z, Lim WF (2021) Investigation on structural, morphological, optical, and current-voltage characteristics of polyfluorene with dissimilar composition spin coated on ITO. Optik 242:167034

    CAS  Google Scholar 

  47. Guidelli E, Baffa O, Clarke D (2015) Enhanced UV emission from silver/ZnO And Gold/ZnO core-shell nanoparticles: photoluminescence, radioluminescence, and optically stimulated luminescence. Sci Rep 5:14004

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Arif M, Volz C, Guha S (2006) Chain morphologies in semicrystalline polyfluorene: evidence from Raman scattering. Phys Rev let 96(2):025503

    CAS  Google Scholar 

  49. Palacios R, Formentin P, Martinez-Ferrero E, Pallarès J, Marsal LF (2010) β-phase morphology in ordered poly(9,9-dioctylfluorene) nanopillars by template wetting method. Nanoscale Res Lett 6(1):35

    PubMed  PubMed Central  Google Scholar 

  50. Ariu M, Lidzey D, Lavrentiev M, Bradley D, Jandke M, Strohriegl P (2001) A study of the different structural phases of the polymer poly (9, 9′-dioctyl fluorene) using Raman spectroscopy. Synth Metals 116(1–3):217–221

    CAS  Google Scholar 

  51. de Castro FA, Heier J, Nüesch F, Hany R (2010) Origin of the kink in current-density versus voltage curves and efficiency enhancement of polymer-C60 heterojunction solar cells. IEEE J Sel Top Quant Electron 16(6):1690–1699

    Google Scholar 

  52. Alqudami A, Annapoorni S, Sen P, Rawat RS (2007) The incorporation of silver nanoparticles into polypyrrole: conductivity changes. Synth Metals 157(1):53–59

    CAS  Google Scholar 

  53. Huang L et al (2015) A transformation process and mechanism between the alpha-conformation and beta-conformation of conjugated polymer PFO in precursor solution. Soft Matter 11(13):2627–2638

    CAS  PubMed  Google Scholar 

  54. Li T et al (2016) Effect of conjugated polymer poly (9,9-dioctylfluorene) (PFO) molecular weight change on the single chains, aggregation and β phase. Polymer 103:299–306

    CAS  Google Scholar 

  55. Biswas S, Dutta B, Bhattacharya S (2013) Dependence of the carrier mobility and trapped charge limited conduction on silver nanoparticles embedment in doped polypyrrole nanostructures. J Appl Phys 114(14):143701

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support provided by the Institute of Nano Optoelectronics Research and Technology (INOR), Universiti Sains Malaysia (USM), and Nano-Optoelectronics Research & Technology Laboratory (NOR Lab), School of Physics, Universiti Sains Malaysia (USM). Support and funding under the USM Fellowship Scheme (Masters) are greatly appreciated and acknowledged. Our gratitude also goes to the Research Creativity and Management Office (RCMO) USM for supporting us with the Short-Term Grant (304/CINOR/6315364).

Funding

We have received funding under the USM Fellowship Scheme (Masters) and also the Research Creativity and Management Office (RCMO) USM Short-Term Grant (304/CINOR/6315364).

Author information

Authors and Affiliations

Authors

Contributions

SR performed conceptualization, methodology, validation, formal analysis, investigation, data curation, writing—original draft; SMM helped in writing—review and editing, visualization, and supervision; ZH contributed to resources, project administration, and funding acquisition; AFO helped in validation, data curation, writing—review and editing; and AM was involved in validation and writing—review and editing.

Corresponding authors

Correspondence to Suvindraj Rajamanickam or Sabah M. Mohammad.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajamanickam, S., Mohammad, S.M., Hassan, Z. et al. Investigations into Ag nanoparticles–carbon–poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) composite: morphological, structural, optical, and electrical characterization. Polym. Bull. 79, 9111–9130 (2022). https://doi.org/10.1007/s00289-021-03938-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03938-w

Keywords

Navigation