Skip to main content
Log in

Synthesis, characterization, and fabrication of silver nanoparticles in 1-vinyl imidazole-based hydrogels and their use in olefin oxidation, hydrogen generation, and oxo-anion adsorption

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Poly(1-vinylimidazole), (p(1-VIm)), hydrogels were synthesized via free radical polymerization reaction and modified with different alkyl dihalides of variable chain lengths such as 1,2-dibromoethane (1,2-BE) and 1,4-dibromobutane (1,4-BB) to obtain polymeric ionic liquid. The chemical structure of synthesized p(1-VIm) macroporous hydrogel was confirmed by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy. P(1-VIm)-Ag, 1,2-BE-p(1-VIm)-Ag, and 1,4-BB-p(1-VIm)-Ag were prepared by reducing Ag(CH3COO) metal salts loaded into p(1-VIm) hydrogels and then reducing with NaBH4. Metal nanoparticles embedded p(1-VIm)-Ag were visualized by transmission electron microscopy. The metal content of all composites was estimated via atomic absorption spectroscopy, and its amount was 4.44 mmol/g hydrogel, 5.44 mmol/g hydrogel, and 8.39 mmol/g hydrogel, for p(1-VIm), 1,2-BE-p(1-VIm), and 1,4-BB-p(1-VIm), respectively. According to the results, metal content of quaternized hydrogels is higher than nonquaternized. P(1-VIm)-Ag, 1,2-BE-p(1-VIm)-Ag, and 1,4-BB-p(1-VIm)-Ag composites were used as catalyst in the aerobic oxidation of olefins by emphasizing the effects of different parameters such as temperature, substituent effect, etc. Olefin oxidation reaction was carried out in higher oxidation conversion by 1,2-BE-p(1-VIm)-Ag and 1,4-BB-p(1-VIm)-Ag than p(VIm)-Ag, due to high hydrophobicity of quaternized composites. The prepared porous hydrogel composites were also used as catalyst in H2 generation from hydrolysis of sodium borohydride (NaBH4). The activation energies, enthalpy, and entropy for NaBH4 hydrolysis catalyzed by composites were determined. According to the results, p(VIm)-Ag showed higher catalytic activity. Low performance of 1,4-BB-p(1-VIm)-Ag than 1,2-BE-p(1-VIm)-Ag and p(1-VIm)-Ag is due to high hydrophobicity of this hydrogel than the other catalytic systems whiles reaction medium is water. Furthermore, the p(1-VIm), 1,2-BE-p(1-VIm), and 1,4-BB-p(1-VIm) were utilized in the adsorption of oxo-anions such as Cr2O7−2, CrO4−2 and MnO4. Between hydrogels, 1,4-BB-p(1-VIm) has better performance than 1,2-BE-p(1-VIm) and p(1-VIm). Because of that, ion absorption capacity is increased with an increase in the number of carbon atoms in the chain of the alkylation agents. In addition, pH dependency of adsorbents was investigated and p(VIm) showed high pH dependency. Indeed, hydrophilic/hydrophobic character and permanent positive charges of Q-p(VIm) hydrogels made them independent of the solution pH. Finally, the catalyst was easily recovered from the reaction medium, and it could be reused for other four runs without significant loss of activity. Durability of catalyst structure without leaching confirmed by FT-IR spectra and atomic absorption spectroscopy, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 3
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 4
Scheme 5
Scheme 6

Similar content being viewed by others

References

  1. Ozay H, Kubilay S, Aktas N, Sahiner N (2011) Utilization of environmentally benign hydrogels and their networks as reactor media in the catalytic reduction of nitrophenols. Int J Polym Mater 60:163–173. https://doi.org/10.1080/00914037.2010.504168

    Article  CAS  Google Scholar 

  2. Sahiner N, Ilgin P (2010) Synthesis and characterization of soft polymeric nanoparticles and composites with tunable properties. J Polym Sci Part A: Polym Chem 48:5239–5246. https://doi.org/10.1002/pola.24324

    Article  CAS  Google Scholar 

  3. Jing G, Wang L, Yu H, Amer WA, Zhang L (2013) Recent progress on study of hybrid hydrogels for water treatment. Colloids Surf A 416:86–94. https://doi.org/10.1016/j.colsurfa.2012.09.043

    Article  CAS  Google Scholar 

  4. Zhang J, Xu S, Kumacheva E (2004) Polymer microgels: Reactors for semiconductor, metal, and magnetic nanoparticles. J Am Chem Soc 126:7908–7914. https://doi.org/10.1021/ja031523k

    Article  CAS  PubMed  Google Scholar 

  5. Ekici S, Ilgin P, Butun S, Sahiner N (2011) Hyaluronic acid hydrogel particles with tunable charges as potential drug delivery devices. Carbohydr Polym 84:1306–1313. https://doi.org/10.1016/j.carbpol.2011.01.028

    Article  CAS  Google Scholar 

  6. Ghorbanloo M, Heydari A, Yahiro H (2018) p(AA)-Pd nanoreactor as a green catalyst for selective aerobic oxidation of primary alcohols and reduction of nitrophenol. Desalin Water Treat 115:106–114. https://doi.org/10.5004/dwt.2018.22314

    Article  CAS  Google Scholar 

  7. Sahiner N, Yildiz S, Al-Lohedan H (2015) The resourcefulness of p(4-VP) cryogels as template for in situ nanoparticle preparation of various metals and their use in H2 production, nitro compound reduction and dye degradation. Appl Catal B: Environ 166:145–154. https://doi.org/10.1016/j.apcatb.2014.11.027

    Article  CAS  Google Scholar 

  8. Mitsudome T, Mikami Y, Funai H, Mizugaki T, Jitsukawa K, Kaneda K (2007) Alcohol dehydrogenation using a reusable hydrotalcite-supported silver nanoparticle catalyst. Angew Chem 120:138–141. https://doi.org/10.1002/anie.200703161

    Article  CAS  Google Scholar 

  9. Sahiner N, Seven F, Al-Lohedan H (2015) Super-fast hydrogen generation via super porous Q-P(VI)-M cryogel catalyst systems from hydrolysis of NaBH4. Int J Hydrogen Energy. 40:4605–4616. https://doi.org/10.1016/j.ijhydene.2015.02.049

    Article  CAS  Google Scholar 

  10. Waszczuk P, Barnard TM, Rice C, Masel RI, Wieckowski A (2002) A nanoparticle catalyst with superior activity for electrooxidation of formic acid. Electrochem Commun 4:599–603. https://doi.org/10.1016/S1388-2481(02)00386-7

    Article  CAS  Google Scholar 

  11. Ozay O, Aktas N, Inger E, Sahiner N (2011) Hydrogel assisted nickel nanoparticle synthesis and their use in hydrogen production from sodium boron hydride. Int J Hydrogen Energy 36:1998–2006. https://doi.org/10.1016/j.ijhydene.2010.11.045

    Article  CAS  Google Scholar 

  12. Zhong M, Liu YT, Xie XM (2015) Self-healable, super tough graphene oxide–poly(acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions. J Mater Chem B 3:4001–4008. https://doi.org/10.1039/C5TB00075K

    Article  CAS  PubMed  Google Scholar 

  13. Urbano BF, Rivas BL, Martinez F, Alexandratos SD (2012) Water-insoluble polymer–clay nanocomposite ion exchange resin based on N-methyl-d-glucamine ligand groups for arsenic removal. React Funct Polym. 72(642):649. https://doi.org/10.1016/j.reactfunctpolym.2012.06.008

    Article  CAS  Google Scholar 

  14. Zeng G, Liu Y, Tang L, Yang G, Pang Y, Zhang Y, Zhou Y, Li Z, Li M, Lai M, He X, He Y (2015) Enhancement of Cd(II) adsorption by polyacrylic acid modified magnetic mesoporous carbon. Chem Eng J. 259(153):160. https://doi.org/10.1016/j.cej.2014.07.115

    Article  CAS  Google Scholar 

  15. Yoshida T, Yamauchi H, Fan Sun G (2004) Chronic health effects in people exposed to arsenic via the drinking water: dose–response relationships in review. Toxicol Appl Pharmacol 198:243–252. https://doi.org/10.1016/j.taap.2003.10.022

    Article  CAS  PubMed  Google Scholar 

  16. Ocinski D, Jacukowicz-Sobala I, Raczyk J, Kociolek-Balawejder E (2014) Evaluation of hybrid polymer containing iron oxides as As(III) and As(V) sorbent for drinking water purification. React Funct Polym 83:24–32. https://doi.org/10.1016/j.reactfunctpolym.2014.07.005

    Article  CAS  Google Scholar 

  17. Lin S, Wei W, Wu X, Zhou T, Mao J, Yun YS (2015) Selective recovery of Pd(II) from extremely acidic solution using ion-imprinted chitosan fiber: Adsorption performance and mechanisms. J Hazard Mater 299:10–17. https://doi.org/10.1016/j.jhazmat.2015.05.050

    Article  CAS  PubMed  Google Scholar 

  18. Anirudhan TS, Jalajamony S (2010) Cellulose-based anion exchanger with tertiary amine functionality for the extraction of arsenic(V) from aqueous media. J Environ Manag 91:2201–2207. https://doi.org/10.1016/j.jenvman.2010.05.019

    Article  CAS  Google Scholar 

  19. Sahiner N, Ozay O, Aktas N (2013) The removal of cyanide ions from aquatic environments by quaternizable p(4-VP) hydrogels of different dimensions. Water Air Soil Pollut 224:1393. https://doi.org/10.1007/s11270-012-1393-0

    Article  CAS  Google Scholar 

  20. Sahiner N, Ozay O (2011) Highly charged p(4-vinylpyridine-co-vinylimidazole) particles for versatile applications: Biomedical, catalysis and environmental. React Funct Polym 7:607–615. https://doi.org/10.1016/j.reactfunctpolym.2011.03.003

    Article  CAS  Google Scholar 

  21. Liu T, An QF, Zhao Q, Lee KR, Zhu BK, Qian JW, Gao CJ (2013) Preparation and characterization of polyelectrolyte complex membranes bearing alkyl side chains for the pervaporation dehydration of alcohols. J Membr Sci. 429(181):189. https://doi.org/10.1016/j.memsci.2012.11.044

    Article  CAS  Google Scholar 

  22. Silva RA, Urzúa MD, Petri DFS (2009) Lysozyme binding to poly (4-Vinyl-N-alkylpyridinium bromide). J Colloid Interface Sci. 330(310):316. https://doi.org/10.1016/j.jcis.2008.10.087

    Article  CAS  Google Scholar 

  23. Toral MI, González-Navarrete J, Leiva A, Ríos HE, Urzúa MD (2009) Chromium retention properties of N-alkyl quaternized poly(4-vinylpyridine). Eur Polym J 45:730–737. https://doi.org/10.1016/j.eurpolymj.2008.12.011

    Article  CAS  Google Scholar 

  24. He X, Chen L, Zhou X, Ji H (2016) Recyclable Pd supported catalysts with low loading for efficient epoxidation of olefins at ambient conditions. Catal Commun 83:78–81. https://doi.org/10.1016/j.catcom.2016.05.013

    Article  CAS  Google Scholar 

  25. Li Y, Zhou XT, Ji HB (2012) Co-catalytic effect of cobalt acetate on aerobic cyclohexene oxidation catalyzed by manganese porphyrin. Catal Commun 27:169–173. https://doi.org/10.1016/j.catcom.2012.07.011

    Article  CAS  Google Scholar 

  26. Ghorbanloo M, Moharramkhani N, Mokari-Yazdeli T (2019) Monfared HH (2019) Cationic hydrogel and graphene oxide based cationic hydrogel with embedded palladium nanoparticles in the aerobic oxidation of olefins. J Porous Mat 26:43–442. https://doi.org/10.1007/s10934-018-0620-5

    Article  CAS  Google Scholar 

  27. Liu K, Yan X, Zou P, Wang Y, Dai L (2015) Large size Pd NPs loaded on TiO2 as efficient catalyst for the aerobic oxidation of alcohols to aldehyde. Cata Commun 58:132–136. https://doi.org/10.1016/j.catcom.2014.09.023

    Article  CAS  Google Scholar 

  28. Nie J, Xie J, Liu H (2013) Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformlfuran on supported Ru catalysts. J Catal 30:83–91. https://doi.org/10.1016/j.jcat.2013.01.007

    Article  CAS  Google Scholar 

  29. Yang L, Huang X, Zhang J, Dong H (2020) Front cover: Protonated poly(ethyleneimine)-coated silica nanoparticles for promoting hydrogen generation from the hydrolysis of sodium borohydride. Chem Plus Chem 85:387–387. https://doi.org/10.1002/cplu.202000015

    Article  CAS  Google Scholar 

  30. Lin KYA, Chang HA (2016) Efficient hydrogen production from NaBH4 hydrolysis catalyzed by a magnetic cobalt/carbon composite derived from a zeolitic imidazolate framework. Chem Eng J 296:243–251. https://doi.org/10.1016/j.cej.2016.03.115

    Article  CAS  Google Scholar 

  31. Demirci S, Sahiner N (2015) The use of metal nanoparticle-embedded poly(ethyleneimine) composite microgel in the reduction of nitrophenols. Water Air Soil Pollut 226:64–69. https://doi.org/10.1007/s11270-015-2332-7

    Article  CAS  Google Scholar 

  32. Genc F¸ Uzun C, Guven O, (2016) Quaternized poly(1-vinylimidazole) hydrogel for anion adsorption. Polym Bull 73:179–190. https://doi.org/10.1007/s00289-015-1479-0

    Article  CAS  Google Scholar 

  33. Ghorbanloo M, Bikas R, Malecki G (2016) New molybdenum (VI) complexes with thiazole-hydrazone ligand: preparation, structural characterization and catalytic applications in olefin epoxidation. Inorg Chim Acta 445:8–16. https://doi.org/10.1016/j.ica.2016.02.018

    Article  CAS  Google Scholar 

  34. Ghorbanloo M, Rahmani S, Yahiro H (2013) Encapsulation of a binuclear manganese (II) complex with an amino acid-base ligand in zeolite Y and its catalytic epoxidation of cyclohexene. Transition Met Chem 38:725–732. https://doi.org/10.1007/s11243-013-0742-4

    Article  CAS  Google Scholar 

  35. Ghorbanloo M, Mohamadi A, Amini M, Tao J (2015) Use of a molybdenum (VI) dioxide complex as a homogeneous and heterogeneous magnetically recoverable epoxidation catalyst. Transit Met Chem 40:321–331. https://doi.org/10.1007/s11243-015-9920-7

    Article  CAS  Google Scholar 

  36. Grivani G, Tangestaninejad S, Halili A (2007) A readily prepared, highly reusable and active polymer-supported molybdenum carbonyl Schiff base complex as epoxidation catalyst. Inorg Chem Commun 10:914. https://doi.org/10.1016/j.inoche.2007.01.016

    Article  CAS  Google Scholar 

  37. Doherty S, Knight JG, Carroll MA, Clemmet AR, Ellison JR, Backhouse T, Holmes N, Bourne RA (2016) Efficient and selective oxidation of sulfides in batch and continuous flow using styrene-based polymer immobilised ionic liquid phase supported peroxotungstates. RSC Adv 6:73118–73131. https://doi.org/10.1039/C6RA11157B

    Article  CAS  Google Scholar 

  38. Mokary Yazdely T, Ghorbanloo M, Monfared HH (2018) Polymeric ionic liquid material-anchored Mn–porphyrin anion: Heterogeneous catalyst for aerobic oxidation of olefins. Appl Organomet Chem 32:e4388. https://doi.org/10.1002/aoc.4388

    Article  CAS  Google Scholar 

  39. Chowdhury P, Saha SK, Bayen SP (2013) Synthesis of quaternized poly(4-Vinyl Pyridine) and the study of its ion exchange property. J Macromol Sci Part A: Pure Appl Chem 50:976–982. https://doi.org/10.1080/10601325.2013.813824

    Article  CAS  Google Scholar 

  40. Barakat MA, Sahiner N (2008) Cationic hydrogels for toxic arsenate removal from aqueous environment. J Environ Manage 88:955–961. https://doi.org/10.1016/j.jenvman.2007.05.003

    Article  CAS  PubMed  Google Scholar 

  41. Tran DT, Zavalij PY, Oliver SRJ (2002) Pb3F5NO3, a Cationic layered material for anion-exchange. J Am Chem Soc 124:3966–3969. https://doi.org/10.1021/ja017333w

    Article  CAS  PubMed  Google Scholar 

  42. Li X, Xu H, Kong F, Wang R (2013) A cationic metal organic framework consisting of nanoscale cages: capture, separation, and luminescent probing of Cr2O72− through a single-crystal to single-crystal process. Angew Chem Int Ed. 52:13769–13773. https://doi.org/10.1002/anie.201307650

    Article  CAS  Google Scholar 

  43. Kuncoro EP, Isnadina DRM, Darmokoesoemo H, Dzembarahmatiny F, Kusuma HS (2018) Characterization and isotherm data for adsorption of Cd+2 from aqueous solution by adsorbent from mixture of bagasse-bentonite. Data Brief 16:345–360. https://doi.org/10.1016/j.dib.2017.11.060

    Article  Google Scholar 

  44. Qasemi M, Afsharnia M, Zarei A, Najafpoor AA, Salari S, Shams M (2018) Phenol removal from aqueous solution using citrullus waste ash. Data Brief 16:620–628. https://doi.org/10.1016/j.dib.2018.03.049

    Article  Google Scholar 

  45. Neolaka YAB, Supriyanto G, Darmokoesoemo H, Kusuma HS (2018) Characterization, kinetic, and isotherm data for Cr(VI) removal from aqueous solution by Cr (VI)-imprinted poly(4-VP-co-MMA) supported on activated Indonesia (Ende-Flores) natural zeolite structure. Data Brief 17:969–979. https://doi.org/10.1016/j.dib.2018.01.076

    Article  PubMed  PubMed Central  Google Scholar 

  46. Neolaka YAB, Supriyanto G, Darmokoesoemo H, Kusuma HS (2018) Characterization, isotherm, and thermodynamic data for selective adsorption of Cr(VI) from aqueous solution by Indonesia (Ende-Flores) natural zeolite Cr(VI)-imprinted-poly (4-VP-co-EGDMA)-ANZ (IIP-ANZ). Data Brief 17:1020–1029. https://doi.org/10.1016/j.dib.2018.01.081

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhou X, Ji H (2010) Biomimetic kinetics and mechanism of cyclohexene epoxidation catalyzed by metalloporphyrins. Chem Eng J 156:411–417. https://doi.org/10.1016/j.cej.2009.10.066

    Article  CAS  Google Scholar 

  48. Erdem M, Dikişler Ö, Erdem B (2016) Removal of Orange II from aqueous solutions using N-vinyl imidazole-based hydrogels as adsorbents. Chem Eng Commun 203:1403–1412. https://doi.org/10.1080/00986445.2016.1198898

    Article  CAS  Google Scholar 

  49. Ghorbanloo M, Moharramkhani N, Yazdely TM, Monfared HH (2019) Cationic hydrogel and graphene oxide based cationic hydrogel with embedded palladium nanoparticles in the aerobic oxidation of olefins. J Porous Mater 26:433–441. https://doi.org/10.1007/s10934-018-0620-5

    Article  CAS  Google Scholar 

  50. Hosseini SM, Monfared HH, Abbasi V, Khoshroo MR (2016) Selective oxidation of hydrocarbons under air using recoverable silver ferrite–graphene (AgFeO2–G) nanocomposite: A good catalyst for green chemistry. Inorg Chem Commun 67:72–79. https://doi.org/10.1016/j.inoche.2016.03.011

    Article  CAS  Google Scholar 

  51. Chimentao RJ, Barrabes N, Sy MF, Fierro JLG, Sueiras JE, Cesteros Y, Salagre P (2006) Synthesis, characterization and catalytic activity of metal nanoparticles in the selective oxidation of olefins in the gas phase. J Exp Nanosci 1:399–418. https://doi.org/10.1080/17458080601024196

    Article  CAS  Google Scholar 

  52. Blanckenberg A, Malgas-Enus R (2018) Olefin epoxidation with metal-based nanocatalysts. Catal Rev 61:27–83. https://doi.org/10.1080/01614940.2018.1492503

    Article  CAS  Google Scholar 

  53. Ghosh S, Acharyya SS, Sasaki T, Bal R (2015) Fabrication of Silver-Tungsten wafer-like nanoarchitectures for selective epoxidation of alkenes. ACS Sustainable Chem Eng 3:2823–2830. https://doi.org/10.1021/acssuschemeng.5b00743

    Article  CAS  Google Scholar 

  54. Liu H, Bai J, Wang S, Li C, Guo L, Liang H, Xu T, Sun W, Li H (2014) The preparation of silver nanoparticles/carbon nanofibers as catalyst in the styrene epoxidation. colloids and surfaces a: physicochem. Eng Aspects 448:154–159. https://doi.org/10.1016/j.colsurfa.2014.02.024

    Article  CAS  Google Scholar 

  55. Guo L, Duan B, Zhang L (2016) Construction of controllable size silver nanoparticles immobilized on nanofibers of chitin microspheres via green pathway. Nano Res 9:2149–2161. https://doi.org/10.1007/s12274-016-1104-z

    Article  CAS  Google Scholar 

  56. Dong W, Huang H, Zhu Y, Li X, Wang X, Li C, Chen B, Wang G, Shi Z (2012) Room-temperature solution synthesis of Ag nanoparticle functionalized molybdenum oxide nanowires and their catalytic applications. Nanotechnology 23:425602. https://doi.org/10.1088/0957-4484/23/42/425602

    Article  CAS  PubMed  Google Scholar 

  57. Hu X, Bai J, Hong H, Li C (2016) Synthesis of Ag-loaded 4A-zeolite composite catalyst via supercritical CO2 fluid for styrene epoxidation. Microporous Mesoporous Mater 228:224–230. https://doi.org/10.1016/j.micromeso.2016.03.042

    Article  CAS  Google Scholar 

  58. Wang HK, Yi CY, Tian L, Wang WJ, Fang J, Zhao JH, Shen WG (2012) Ag-Cu bimetallic nanoparticles prepared by microemulsion method as catalyst for epoxidation of styrene. J Nanomater 2012:453915–453922. https://doi.org/10.1155/2012/453915

    Article  CAS  Google Scholar 

  59. Guo H, Chen Y, Chen X, Wen R, Yue GH, Peng DL (2011) Facile synthesis of near-monodisperse Ag@Ni core-shell nanoparticles and their application for catalytic generation of hydrogen. Nanotechnology 22:195604. https://doi.org/10.1088/0957-4484/22/19/195604

    Article  CAS  PubMed  Google Scholar 

  60. Al-Thabahiti SA, Khan Z, Malik MA (2019) Bimetallic Ag-Ni nanoparticles as an effective catalyst for hydrogen generation from hydrolysis of sodium borohydride. Int J Hydrogen Energ 44:16452–16466. https://doi.org/10.1016/j.ijhydene.2019.04.240

    Article  CAS  Google Scholar 

  61. Ai L, Liu X, Jiang J (2015) Synthesis of loofah sponge carbon supported bimetallic silver-cobalt nanoparticles with enhanced catalytic activity towards hydrogen generation from sodium borohydride hydrolysis. J Alloy Compd 625:164–170. https://doi.org/10.1016/j.jallcom.2014.11.135

    Article  CAS  Google Scholar 

  62. Sahiner N, Yildiz S, Sahiner M, Issa ZA, Al-Lohedan H (2015) Macroporous cryogel metal nanoparticle composites for H2 generation from NaBH4 hydrolysis in seawater. Appl Surf Sci. 354(388):396. https://doi.org/10.1016/j.apsusc.2015.04.183

    Article  CAS  Google Scholar 

  63. Sahiner N, Seven F (2014) The use of superporous p(AAc (acrylic acid)) cryogels as support for Co and Ni nanoparticle preparation and as reactor in H2 production from sodium borohydride hydrolysis. Energy 71:170–179. https://doi.org/10.1016/j.energy.2014.04.031

    Article  CAS  Google Scholar 

  64. Sahiner N, Seven F (2014) Superporous P(2-hydroxyethyl methacrylate) cryogel-M (M:Co, Ni, Cu) composites as highly effective catalysts in H2 generation from hydrolysis of NaBH4 and NH3BH3. Int J Hydrogen Energy 39:15455–15463. https://doi.org/10.1016/j.ijhydene.2014.07.093

    Article  CAS  Google Scholar 

  65. Li F, Arthur EE, La D, Li Q, Kim H (2014) Immobilization of CoCl2 (cobalt chloride) on PAN (polyacrylonitrile) composite nanofiber mesh filled with carbon nanotubes for hydrogen production from hydrolysis of NaBH4 (sodium borohydride). Energy 71:32–39. https://doi.org/10.1016/j.energy.2014.03.130

    Article  CAS  Google Scholar 

  66. Sahiner N, Yasar AO (2014) Monodispersed p(2-VP) and p(2-VP-co-4-VP) particle preparation and their use as template for metal nanoparticle and as catalyst for H2 production from NaBH4 and NH3BH3 hydrolysis. Int J Hydrogen Energ 39:10476–10484. https://doi.org/10.1016/j.ijhydene.2014.04.214

    Article  CAS  Google Scholar 

  67. Massoudi S, Bagheri1 M, Hosseini M (2021). Poly (N vinyl imidazole) nitrogen doped graphene quantum dot hydrogel adsorbent with remarkable capability for metal ion removal from aqueous systems. Research Square. https://doi.org/10.21203/rs.3.rs-328639/v1

  68. Lamkhao S, Randorn C (2017) Self-initiated photocatalytic polymerization of tough and flexible polyacrylamide hydrogel/polymeric semiconductor C3N4 composites. J Photopolym Sci Technol 30:425–429. https://doi.org/10.2494/photopolymer.30.425

    Article  CAS  Google Scholar 

  69. Ahmada R, Hasana I, Mittalb A (2017) Adsorption of Cr (VI) and Cd (II) on chitosan grafted polyaniline-OMMT nanocomposite: isotherms, kinetics and thermodynamics studies. Desalin Water Treat. 58:144–153. https://doi.org/10.5004/dwt.2017.0414

    Article  CAS  Google Scholar 

  70. Dong S, Wang Y, Li J, Zhanga D, Zhoua Y, Tong Y (2020) Tuning the crosslink structure of cationic hydrogel for enhanced chromium (VI) removal: the covalent and electrostatic co-crosslinked effects and adsorption mechanism. Chem Eng J. 394:124944. https://doi.org/10.1016/j.cej.2020.124944

    Article  CAS  Google Scholar 

  71. Jiang YH, Qi XX, Zhao JZ, Ni L, Chen ZS (2014) Synthesis of AMIMCl/AM Copolymer Hydrogel and its adsorption effect on permanganate anion separ. Sci Technol 49:915–923. https://doi.org/10.1080/01496395.2013.863335

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to University of Zanjan for financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massomeh Ghorbanloo.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 16311 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi Boji, M., Ghorbanloo, M. Synthesis, characterization, and fabrication of silver nanoparticles in 1-vinyl imidazole-based hydrogels and their use in olefin oxidation, hydrogen generation, and oxo-anion adsorption. Polym. Bull. 79, 1257–1286 (2022). https://doi.org/10.1007/s00289-021-03937-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03937-x

Keywords

Navigation