Skip to main content
Log in

Immobilized on MgCl2 bis(phenoxy-imine) complexes of Ti and Zr as catalysts for preparing UHMWPE and ethylene/higher α-olefin copolymers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A series of mono- and polynuclear bis(phenoxy-imine) titanium and zirconium complexes were synthesized. The complexes were immobilized on an MgCl2 carrier prepared by different methods. The homogeneous complexes and supported catalysts were evaluated for ethylene polymerization. The effects of the nuclearity of the precatalysts, nature of organoaluminum activator and the polymerization temperature were examined. It has been shown that immobilized on MgCl2 catalysts are superior in activity to homogeneous precatalysts by the level of activity (up to 6.1 ton of PE (molM h atm)−1). The precatalysts obtained in situ by the interaction of FI complexes, Bu2Mg and Et2AlCl are suitable for preparing ultra-high molecular weight polyethylene (UHMWPE) with molecular weight up to 6 106 Da even at elevated reaction temperatures. In addition, supported precatalysts, in the presence of MAO, effectively catalyze the ethylene–higher olefin copolymerization (activity—up to 8.2 ton of copolymer (molM⋅h⋅atm)−1).

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mitani M, Saito J, Ishii S, Nakayama Y, Makio H, Matsukawa N, Matsui S, Mohri J, Furuyama R, Terao H, Bando H, Tanaka H, Fujita T (2004) FI catalysts: new olefin polymerization catalysts for the creation of value-added polymers. Chem Rec 4:137–158. https://doi.org/10.1002/tcr.20010

    Article  PubMed  Google Scholar 

  2. Makio H, Fujita T (2009) Development and application of FI catalysts for olefin polymerization: unique catalysis and distinctive polymer formation. Acc Chem Res 42:532–1544. https://doi.org/10.1021/ar900030a

    Article  CAS  Google Scholar 

  3. Matsugia T, Fujita T (2008) High-performance olefin polymerization catalysts discovered on the basis of a new catalyst design concept. Chem Soc Rev 37:1264–1277. https://doi.org/10.1039/B708843B

    Article  Google Scholar 

  4. Makio H, Terao H, Iwashita A, Fujita T (2011) FI catalysts for olefin polymerization—a comprehensive treatment. Chem Rev 111:2363–2449. https://doi.org/10.1021/cr100294r

    Article  CAS  PubMed  Google Scholar 

  5. Hlatky GG (2000) Heterogeneous single-site catalysts for olefin polymerization. Chem Rev 100:1347–1376. https://doi.org/10.1021/cr9902401

    Article  CAS  PubMed  Google Scholar 

  6. Severn JR, Chadwick JC, Duchateau R, Friederichs N (2005) “Bound but not gagged” immobilizing single-site α-olefin polymerization catalysts. Chem Rev 105:4073–4147. https://doi.org/10.1021/cr040670d

    Article  CAS  PubMed  Google Scholar 

  7. Severn JR, Chadwick JC (2013) Immobilization of homogeneous olefin polymerization catalysts. Factors influencing activity and stability. Dalton Trans 42:8979–8987. https://doi.org/10.1039/c3dt33098b

    Article  CAS  PubMed  Google Scholar 

  8. Gagieva SCh, Tuskaev VA, Takazova RU, Buyanovskaya AG, Smirnova OV, Bravaya NM, Bulychev BM (2019) Ethylene polymerization using immobilized fluorine-containing bis-salicylidenimine-titanium complexes. Russ Chem Bull 68:2114–2118. https://doi.org/10.1007/s11172-019-2675-0

    Article  CAS  Google Scholar 

  9. Li W, Yang H, Zhang J, Mu J, Gong D, Wang X (2016) Immobilization of isolated FI catalyst on polyhedral oligomeric silsesquioxane-functionalized silica for the synthesis of weakly entangled polyethylene. Chem Commun 52:11092–11095. https://doi.org/10.1039/C6CC04814E

    Article  CAS  Google Scholar 

  10. Yu F, Yang Y, He D, Gong D, Chen ZR (2017) Pressure-sensitive supported fi catalyst for the precise synthesis of uni- and bimodal polyethylene. Ind Eng Chem Res 56:4684–4689. https://doi.org/10.1021/acs.iecr.7b00083

    Article  CAS  Google Scholar 

  11. Naundorf C, Matsui S, Saito J, Fujita T, Klapper M, Müllen K (2006) Ultrahigh molecular weight polyethylene produced by a bis(phenoxy-imine) titanium complex supported on latex particles. J Polym Sci Part A Polym Chem 44:3103–3113. https://doi.org/10.1002/pola.21418

    Article  CAS  Google Scholar 

  12. Zhang D, Jin G (2004) Self-immobilized titanium and zirconium catalysts with phenoxy-imine ligands for ethylene polymerization. X-ray crystal structure of Bis(N-(3-t-butylsalicylidene)-4′-allyloxyanilinato) zirconium (IV) dichloride. Appl Catal A 262:85–91. https://doi.org/10.1016/j.apcata.2003.11.010

    Article  CAS  Google Scholar 

  13. Ivanchev SS, Vasil’eva MY, Ivancheva NI, Badaev VK, Oleinik II, Sviridova EV (2009) Polymerization of ethylene with self-immobilizing bis(phenoxyimine) catalytic systems. Polym Sci Ser B 51:276–282. https://doi.org/10.1134/S1560090409070100

    Article  Google Scholar 

  14. Ivancheva NI, Badaev VK, Sviridova EV, Nikolaev DA, Oleinink IV, Ivanchev SS (2011) Specific features of ethylene polymerization on self-immobilizing catalytic systems based on titanium bis(phenoxy imine) complexes. Russ J Appl Chem 84:118–123. https://doi.org/10.1134/S1070427211010204

    Article  CAS  Google Scholar 

  15. Oleynik IV, Shundrina IK, Oleyinik II (2020) Highly active titanium(IV) dichloride FI catalysts bearing a diallylamino group for the synthesis of disentangled UHMWPE. Polym Adv Technol 31:1921–1934. https://doi.org/10.1002/pat.4917

    Article  CAS  Google Scholar 

  16. Severn JR, Chadwick JC (2004) MAO-free activation of metallocenes and other single-site catalysts for ethylene polymerization using spherical supports based on MgCl2. Macromol Rapid Commun 25:1024–1028. https://doi.org/10.1002/marc.200400093

    Article  CAS  Google Scholar 

  17. Nakayama Y, Saito J, Bando H, Fujita T (2006) MgCl2/R’nAl(OR)3-n: an excellent activator/support for transition-metal complexes for olefin polymerization. Chem Eur J 12:7546–7556. https://doi.org/10.1002/chem.200600355

    Article  CAS  PubMed  Google Scholar 

  18. Li H, Marks TJ (2006) Nuclearity and cooperativity effects in binuclear catalysts and cocatalysts for olefin polymerization. PNAS 103:15295–15302. https://doi.org/10.1073/pnas.0603396103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Delferro M, Marks TJ (2011) Multinuclear olefin polymerization catalysts. Chem Rev 111:2450–2485. https://doi.org/10.1021/cr1003634

    Article  CAS  PubMed  Google Scholar 

  20. Salata MR, Marks TJ (2009) Catalyst nuclearity effects in olefin polymerization. Enhanced activity and comonomer enchainment in ethylene + olefin copolymerizations mediated by bimetallic group 4 phenoxyiminato catalysts. Macromolecules 42:1920–1933. https://doi.org/10.1021/ma8020745

    Article  CAS  Google Scholar 

  21. Han S, Yao E, Qin W, Zhang S, Ma Y (2012) Binuclear heteroligated titanium catalyst based on phenoxyimine ligands: synthesis, characterization, and ethylene (Co)polymerization. Macromolecules 45:4054–4059. https://doi.org/10.1021/ma300384w

    Article  CAS  Google Scholar 

  22. Liu S, Xing Y, Zheng Q, Jia Y, Li Z (2020) Synthesis of anthracene-bridged dinuclear phenoxyiminato organotitanium catalysts with enhanced activity, thermal stability, and comonomer incorporation ability toward ethylene (Co)polymerization. Organometallics 39:3268–3274. https://doi.org/10.1021/acs.organomet.0c00477

    Article  CAS  Google Scholar 

  23. Ivanchev SI, Yakimansky AV, Ivancheva NI, Oleinik II, Tolstikov GA (2012) Ethylene polymerization using catalysts based on binuclear phenoxyimine titanium halide complexes. Eur Polym J 48:191–199. https://doi.org/10.1016/j.eurpolymj.2011.10.020

    Article  CAS  Google Scholar 

  24. Rishina LA, Galashina NM, Gagieva SC, Tuskaev VA, Kissin YV (2013) Cocatalyst effect in propylene polymerization reactions with post-metallocene catalysts. Eur Polym J 49:147–155. https://doi.org/10.1016/j.eurpolymj.2012.10.018

    Article  CAS  Google Scholar 

  25. Gagieva SCh, Sukhova TA, Savinov DV, Optov VA, Bravaya NM, Belokon YuN, Bulychev BM (2003) New fluorine-containing titanium bis(salicylideneimino) complexes in olefin polymerization. Russ Chem Bull 52:1693–1697. https://doi.org/10.1023/A:1026175815338

    Article  CAS  Google Scholar 

  26. Gagieva SCh, Sukhova TA, Savinov DB, Bravaya NM, Belokon YuN, Bulychev BM (2004) New dinuclear fluorine-containing bis(salicylidene)imine titanium complex: synthesis and catalytic properties in polymerization of ethylene and propylene. Russ Chem Bull 53:2763–2767. https://doi.org/10.1007/s11172-005-0187-6

    Article  CAS  Google Scholar 

  27. Seeger M, Otto W, Flick W, Bickelhaupt F, Akkerman OS (2000) Magnesium Compounds. In Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH: Weinheim

  28. Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288. https://doi.org/10.1063/1.1695690

    Article  CAS  Google Scholar 

  29. Kurtz SM (2004) The UHMWPE handbook: ultra-high molecular weight polyethylene in total joint replacement, 1st edn. Elsevier Academic Press

  30. Randall JC (1989) A review of high-resolution liquid 13C NMR characterization of ethylene-based polymers. J Macromol Sci Part C Polym Rev 29:201–317. https://doi.org/10.1080/07366578908055172

    Article  Google Scholar 

  31. Gagieva SC, Sukhova TA, Savinov DV, Optov VA, Bravaya NM, Belokon YN, Bulychev BM (2005) New fluorine-containing bissalicylidenimine–titanium complexes for olefin polymerization. J App Polym Sci 95:1040–1049. https://doi.org/10.1002/app.21196

    Article  CAS  Google Scholar 

  32. Makhaev VD, Petrova LA, Bravaya NM, Faingol’d EE, Mukhina EV, Panin AN, Gagieva SCh, Tuskaev VA, Bulychev BM (2014) Mechanochemical synthesis of zirconium and hafnium phenoxyimine complexes L2MCl2 (L = N-(3,5-di-tert-butylsalicylidene)-2,3,5,6-tetrafluoroanilinate anion) and their catalytic properties in ethylene polymerization. Russ Chem Bull 63:1533–1538. https://doi.org/10.1007/s11172-014-0631-6

    Article  CAS  Google Scholar 

  33. Dong G, Chun-qi Q, Chun-ying D, Ke-liang P, Qing-jin M (2003) Synthesis and structural characterization of a novel mixed-valent CuII CuI CuII triangular metallomacrocycle using an imine-based rigid ligand. Inorg Chem 42:2024–2030. https://doi.org/10.1021/ic0260668

    Article  CAS  PubMed  Google Scholar 

  34. Waldeck AR, Kuchel PW, Lennon AJ, Chapman BE (1997) NMR diffusion measurements to characterise membrane transport and solute binding. Prog Nucl Magn Reson Spectrosc 30:39–68. https://doi.org/10.1016/S0079-6565(96)01034-5

    Article  CAS  Google Scholar 

  35. Khodov IA, Alper GA, Mamardashvili GM, Mamardashvili NZh (2015) Hybrid multi-porphyrin supramolecular assemblies: synthesis and structure elucidation by 2D DOSY NMR studies. J Mol Struct 1099:174–180. https://doi.org/10.1016/j.molstruc.2015.06.062

    Article  CAS  Google Scholar 

  36. Timmerman P, Weidmann JL, Jolliffe KA, Prins LJ, Reinhoudt DN, Shinkai S, Frishc L, Cohen Y (2000) NMR diffusion spectroscopy for the characterization of multicomponent hydrogen-bonded assemblies in solution. J Chem Soc Perkin Trans 2:2077–2089. https://doi.org/10.1039/B003968N

    Article  Google Scholar 

  37. Kuptsov AH, Zhizhin GN (1998) Handbook of fourier transform raman and infrared spectra of polymers. Elsevier, Amsterdam

    Google Scholar 

  38. Ronca S, Forte G, Tjaden H, Rastogi S (2015) Solvent-free solid-state-processed tapes of ultrahigh-molecular-weight polyethylene: influence of molar mass and molar mass distribution on the tensile properties. Ind Eng Chem Res 54:7373–7381. https://doi.org/10.1021/acs.iecr.5b01469

    Article  CAS  Google Scholar 

  39. Nakayama Y, Bando H, Sonobe Y, Fujita T (2004) Olefin polymerization behavior of bis(phenoxy-imine) Zr, Ti, and V complexes with MgCl2-based cocatalysts. J Mol Catal A 213:141–150. https://doi.org/10.1016/j.molcata.2003.11.025

    Article  CAS  Google Scholar 

  40. Nakayama Y, Bando H, Sonobe Y, Fujita T (2004) Development of single-site new olefin polymerization catalyst systems using MgCl2-based activators: MAO-free MgCl2-supported FI catalyst systems. Bull Chem Soc Jpn 77:617–625. https://doi.org/10.1246/bcsj.77.617

    Article  CAS  Google Scholar 

  41. Kissin YV, Nowlin TE, Mink RI, Brandolini AJ (2000) A new cocatalyst for metallocene complexes in olefin polymerization. Macromolecules 33:4599–4601. https://doi.org/10.1021/ma992047e

    Article  CAS  Google Scholar 

  42. Kissin YV, Mink RI, Brandolini AJ, Nowlin TE (2009) AlR2Cl/MgR2 combinations as universal cocatalysts for Ziegler-Natta, metallocene, and post-metallocene catalysts. J Polym Sci Part A Polym Chem 47:3271–3285. https://doi.org/10.1002/pola.23391

    Article  CAS  Google Scholar 

  43. Tuskaev VA, Gagieva SCh, Kurmaev DA, Zubkevich SV, Fedyanin IV, Buzin MI, Nikiforova GG, Vasil’ev VG, Saracheno D, Privalov VI, Bulychev BM (2020) MAO-free copolymerization of ethylene and 1-hexene with Ti (IV) complexes supported by fluorinated 2-hydroxymethylphenol derivatives. Polym Bull. https://doi.org/10.1007/s00289-020-03322-0

    Article  Google Scholar 

  44. Tuskaev VA, Gagieva SC, Maleev VI, Borissova AO, Solov’ev MV, Starikova ZA, Bulychev BM (2013) Titanium (IV) and zirconium (IV) chloride complexes on the base of chiral tetraaryl-1,3-dioxolane-4,5-dimetanol ligands in the polymerization of ethylene: the promoting role of lithium and magnesium chloride. Polymer 54:4455–4462. https://doi.org/10.1016/j.polymer.2013.06.041

    Article  CAS  Google Scholar 

  45. Gagieva SCh, Tuskaev VA, Saracheno D, Buyanovskaya AG, Smirnova OV, Zvukova TM, Sizov AI, Bulychev BM (2020) Ethylene homopolymerization and copolymerization with 1-hexene and 1-octene catalyzed by titanium(IV) dichloride TADDOLate complex activated with MAO. Polym Bull. https://doi.org/10.1007/s00289-020-03195-3

    Article  Google Scholar 

  46. Chum PS, Swogger KW (2008) Olefin polymer technologies—history and recent progress at the dow chemical company. Prog Polym Sci 33:797–819. https://doi.org/10.1016/j.progpolymsci.2008.05.003

    Article  CAS  Google Scholar 

  47. Olabisi O, Robeson LM, Shaw MT (1979) Polymer-polymer miscibility. Academic Press, New York, p 370

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (Grant Number 18-13-00375). NMR data were collected with the financial support from Ministry of Science and Higher Education of the Russian Federation using the equipment of Center for molecular composition studies of INEOS RAS. NMR diffusion experiments were funded by the Council on grants of the President of the Russian Federation (MК-1301.2021.1.3). IR studies of the copolymers were performed with the financial support to the Development program of the Interdisciplinary Scientific and Educational School of Lomonosov Moscow State University “The future of the planet and global environmental change.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav A. Tuskaev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 570 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gagieva, S.C., Tuskaev, V.A., Magomedov, K.F. et al. Immobilized on MgCl2 bis(phenoxy-imine) complexes of Ti and Zr as catalysts for preparing UHMWPE and ethylene/higher α-olefin copolymers. Polym. Bull. 79, 8333–8351 (2022). https://doi.org/10.1007/s00289-021-03885-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03885-6

Keywords

Navigation