Skip to main content
Log in

Influence of multi-walled carbon nanotubes with different diameters and lengths on the tension, shear and bending performance of glass/epoxy laminates

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this research, the effect of multi-walled carbon nanotubes functionalized with carboxylic acids having different diameters and lengths on the mechanical properties of E-glass/epoxy laminated composites was investigated. Multi-walled carbon nanotubes at 0.1, 0.3 and 0.5 wt% ratios were added to the epoxy. The tensile strength, the modulus of elasticity, Poisson’s ratio in the fiber direction and the tensile strength, the modulus of elasticity in the transverse direction of composites were determined. In addition, the shear strength, the flexural strength and the interlaminar shear strength were investigated. According to the obtained results, the shear strength and tensile strength in both directions of the composites decreased. The modulus of elasticity in the fiber direction of the composites increased 16.01% at the ratio of 0.3 wt% of the long-thin nanotubes. The Poisson’s ratio and the modulus of elasticity in the transverse direction of the composites enhanced 16.67% and 33.25% at the ratio of 0.5 wt% of the long-thin nanotubes, respectively. The flexural strength and the interlaminar shear strength of the composites improved 34.75% and 19.72% at the ratio of 0.1 wt% of the short-thin nanotubes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Liu L, Zhang H, Zhou Y (2014) Quasi-static mechanical response and corresponding analytical model of laminates incorporating with nanoweb interlayers. Compos Struct 111:436–445

    Article  Google Scholar 

  2. Naghashpour A, Hoa SV (2013) In situ monitoring of through-thickness strain in glass fiber/epoxy composite laminates using carbon nanotube sensors. Compos Sci Technol 78:41–47

    Article  CAS  Google Scholar 

  3. Li W, Dichiara A, Zha J, Su Z, Bai J (2014) On improvement of mechanical and thermo-mechanical properties of glass fabric/epoxy composites by incorporating CNT–Al2O3 hybrids. Compos Sci Technol 103:36–43

    Article  CAS  Google Scholar 

  4. Xu H, Tong X, Zhang Y, Li Q, Lu W (2016) Mechanical and electrical properties of laminated composites containing continuous carbon nanotube film interleaves. Compos Sci Technol 127:113–118

    Article  CAS  Google Scholar 

  5. Bashar M, Mertiny P, Sundararaj U (2014) Effect of nanocomposite structures on fracture behavior of epoxy-clay nanocomposites prepared by different dispersion methods. J Nanomater. https://doi.org/10.1155/2014/312813

    Article  Google Scholar 

  6. Dong Y, Chaudhary D, Ploumis C, Lau KT (2011) Correlation of mechanical performance and morphological structures of epoxy micro/nanoparticulate composites. Compos Part A Appl Sci 42:1483–1492

    Article  Google Scholar 

  7. Kharitonov AP, Tkachev AG, Blohin AN, Dyachkova TP, Kobzev DE, Maksimkin AV et al (2016) Reinforcement of Bisphenol-F epoxy resin composites with fluorinated carbon nanotubes. Compos Sci Technol 134:161–167

    Article  CAS  Google Scholar 

  8. Mahrholz T, Stängle J, Sinapius M (2009) Quantitation of the reinforcement effect of silica nanoparticles in epoxy resins used in liquid composite moulding processes. Compos Part A-Appl Sci 40:235–243

    Article  Google Scholar 

  9. Nam TH, Goto K, Nakayama H, Oshima K, Premalal V, Shimamura Y et al (2014) Effects of stretching on mechanical properties of aligned multi-walled carbon nanotube/epoxy composites. Compos Part A-Appl Sci 64:194–202

    Article  CAS  Google Scholar 

  10. Yasmin A, Luo JJ, Abot JL, Daniel IM (2006) Mechanical and thermal behavior of clay/epoxy nanocomposites. Compos Sci Technol 66:2415–2422

    Article  CAS  Google Scholar 

  11. Rahman MM, Zainuddin S, Hosur MV, Robertson CJ, Kumar A, Trovillion J et al (2013) Effect of NH2-MWCNTs on crosslink density of epoxy matrix and ILSS properties of E-glass/epoxy composites. Compos Struct 95:213–221

    Article  Google Scholar 

  12. Rahman MM, Hosur M, Zainuddin S, Jahan N, Miller-Smith EB, Jeelani S (2015) Enhanced tensile performance of epoxy and E-glass/epoxy composites by randomly-oriented amino-functionalized MWCNTs at low contents. J Compos Mater 49(7):759–770

    Article  CAS  Google Scholar 

  13. Kim SK, Kim JT, Kim HC, Rhee KY, Kathi J (2012) Thermal and mechanical properties of epoxy/carbon fiber composites reinforced with multi-walled carbon nanotubes. J Macromol Sci B 51(2):358–367

    Article  CAS  Google Scholar 

  14. Shokrieh MM, Daneshvar A, Akbari S (2014) Reduction of thermal residual stresses of laminated polymer composites by addition of carbon nanotubes. Mater Design 53:209–216

    Article  CAS  Google Scholar 

  15. Jia X, Zhu J, Li W, Chen X, Yang X (2015) Compressive and tensile response of CFRP cylinders induced by multi-walled carbon nanotubes. Compos Sci Technol 110:35–44

    Article  CAS  Google Scholar 

  16. Alnefaie KA, Aldousari SM, Khashaba UA (2013) New development of self-damping MWCNT composites. Compos Part A Appl Sci 52:1–11

    Article  CAS  Google Scholar 

  17. Garg M, Sharma S, Mehta R (2015) Pristine and amino functionalized carbon nanotubes reinforced glass fiber epoxy composites. Compos Part A Appl Sci 76:92–101

    Article  CAS  Google Scholar 

  18. Muthu J, Dendere C (2014) Functionalized multiwall carbon nanotubes strengthened GRP hybrid composites: improved properties with optimum fiber content. Compos Part B-Eng 67:84–94

    Article  CAS  Google Scholar 

  19. Shen Z, Bateman S, Wu DY, McMahon P, Dell’Olio M, Gotama J (2009) The effects of carbon nanotubes on mechanical and thermal properties of woven glass fibre reinforced polyamide-6 nanocomposites. Compos Sci Technol 69(2):239–244

    Article  CAS  Google Scholar 

  20. Shokrieh MM, Saeedi A, Chitsazzadeh M (2014) Evaluating the effects of multiwalled carbon nanotubes on the mechanical properties of chopped strand mat/polyester composites. Mater Design 56:274–279

    Article  CAS  Google Scholar 

  21. Taraghi I, Fereidoon A, Zamani MM, Mohyeddin A (2015) Mechanical, thermal, and viscoelastic properties of polypropylene/glass hybrid composites reinforced with multiwalled carbon nanotubes. J Compos Mater 49(28):3557–3566

    Article  CAS  Google Scholar 

  22. Aldousari S (2016) In-plane shear properties of nano-hybridized GFRE composites with MWCNTs. Brit J Appl Sci Technol 16(3):1–14

    Article  Google Scholar 

  23. Vargas G, Ramos JÁ, De Gracia J, Ibarretxe J, Mujika F (2015) In-plane shear behaviour of multiscale hybrid composites based on multiwall carbon nanotubes and long carbon fibres. J Reinf Plast Comp 34(23):1926–1936

    Article  CAS  Google Scholar 

  24. Fernández C, Medina C, Pincheira G, Canales C, Flores P (2013) The effect of multiwall carbon nanotubes on the in-plane shear behavior of epoxy glass fiber reinforced composites. Compos Part B Eng 55:421–425

    Article  Google Scholar 

  25. Lili S, Yan Z, Yuexin D, Zuoguang Z (2008) Interlaminar shear property of modified glass fiber-reinforced polymer with different MWCNTs. Chinese J Aeronaut 21:361–369

    Article  Google Scholar 

  26. Guo J, Zhang Q, Gao L, Zhong W, Sui G, Yang X (2017) Significantly improved electrical and interlaminar mechanical properties of carbon fiber laminated composites by using special carbon nanotube pre-dispersion mixture. Compos Part A Appl Sci 95:294–303

    Article  CAS  Google Scholar 

  27. Liu W, Li L, Zhang S, Yang F, Wang R (2017) Mechanical properties of carbon nanotube/carbon fiber reinforced thermoplastic polymer composite. Polym Composite 38(9):2001–2008

    Article  CAS  Google Scholar 

  28. Zhang J, Ju S, Jiang D, Peng HX (2013) Reducing dispersity of mechanical properties of carbon fiber/epoxy composites by introducing multi-walled carbon nanotubes. Compos Part B Eng 54(1):371–376

    Article  CAS  Google Scholar 

  29. Wang B, Zhou X, Yin J, Wang L (2013) Investigation on some matrix-dominated properties of hybrid multiscale composites based on carbon fiber/carbon nanotube modified epoxy. J Appl Polym Sci 128(2):990–996

    Article  CAS  Google Scholar 

  30. Sharma K, Shukla M (2014) Three-phase carbon fiber amine functionalized carbon nanotubes epoxy composite: processing, characterisation, and multiscale modeling. J Nanomater. https://doi.org/10.1155/2014/837492

    Article  Google Scholar 

  31. Rao PS, Renji K, Bhat MR, Mahapatra DR, Narayana Naik GN (2015) Mechanical properties of CNT-Bisphenol E cyanate ester-based CFRP nanocomposite developed through VARTM process. J Reinf Plast Comp 34(12):1000–1014

    Article  CAS  Google Scholar 

  32. ASTM D 3039M-14 (2014) Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials

  33. ASTM D 5379M-12 (2012) Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method

  34. ASTM D 790–15 (2015) Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials

  35. ASTM D 2344M-13 (2013) Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates

  36. Jia X, Li G, Liu B, Luo Y, Yang G, Yang X (2013) Multiscale reinforcement and interfacial strengthening on epoxy-based composites by silica nanoparticle multiwalled carbon nanotube complex. Compos Part A Appl Sci 48:101–109

    Article  CAS  Google Scholar 

  37. Kiratli S, Aslan Z (2018) Flexural behavior of graphene nanoplatelets reinforced cross-ply E-glass/epoxy laminated composite materials. Cumhuriyet Sci J 39(2):531–542

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Sivas Cumhuriyet University Scientific Research Projects Coordination Unit with the Project Number M-599.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakine Kiratli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiratli, S., Aslan, Z. Influence of multi-walled carbon nanotubes with different diameters and lengths on the tension, shear and bending performance of glass/epoxy laminates. Polym. Bull. 79, 4801–4826 (2022). https://doi.org/10.1007/s00289-021-03716-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03716-8

Keywords

Navigation