Skip to main content
Log in

Fractal characterization of electrical conductivity and mechanical properties of copper particulate polyester matrix composites using image processing

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, the electrical conductivity and the mechanical properties of the dendritic-shaped copper powder-filled unsaturated polyester resin were investigated through micro-images using fractal dimension characterization, image processing technique and box-counting method. In these experiments, the polyester matrix is combined with copper particulate filler to determine the effects of filler concentration on the electrical conductivity, material hardness, stiffness and tensile characterization of the composite mixture. It is observed that the fractal dimension is affected by the filler concentration indirectly. The increase in filler concentration added in the resin causes the spatial pattern of the conductive chain formed in the matrix medium to be more complex. Filler particle agglomeration also affects the fractal dimension. The electrical conductivity of agglomerated structures is better than a uniform structure. Image processing technique and fractal dimension parameter are powerful tools for investigating the filler spatial dispersion morphology of the composite material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Yaman K, Taga Ö (2018) Thermal and electrical conductivity of unsaturated polyester resin filled with copper filler composites. Int J Polym Sci. https://doi.org/10.1155/2018/8190190

    Article  Google Scholar 

  2. Krocker R, Schneider M, Hamann K (1972) Polymer reactions on powder surfaces. Proc Org Coat 1:23–44

    Article  Google Scholar 

  3. Krupa I, Cecen V, Boudenne A, Prokes J, Novak I (2013) The mechanical and adhesive properties of electrically and thermally conductive polymeric composites based on high density polyethylene filled with nickel powder. Mater Des 51:620–628

    Article  CAS  Google Scholar 

  4. Tavman IH (1997) Thermal and mechanical properties of copper powder filled poly (ethylene) composites. Powder Technol 91:63–67

    Article  CAS  Google Scholar 

  5. Yaman K, Çoğun C (2014) An experimental work on using conductive powder-filled polymer composite cast material as tool electrode in EDM. Int J Adv Manuf Technol 73:535–543

    Article  Google Scholar 

  6. Mamunya YP, Davydenko VV, Pissis P, Lebedev EV (2002) Electrical and thermal conductivity of polymers filled with metal powders. Eur Polym J 38:1887–1987

    Article  CAS  Google Scholar 

  7. Blythe AR (1984) Electrical resistivity measurements of polymer materials. Polym Test 4:195–209

    Article  CAS  Google Scholar 

  8. Guoquan W (1997) Electrical resistance measurement of conductive network in short carbon fibre-polymer composites. Poly Test 16:277–286

    Article  Google Scholar 

  9. Wu HP, Wu XJ, Ge MY, Zhang GQ, Wang YW, Jiang JZ (2007) Effect analysis of filler sizes on percolation threshold of isotropical conductive adhesives. Compos Sci Technol 67:1116–1120

    Article  CAS  Google Scholar 

  10. Yaman K, Öktem MF (2019) Size, concentration and content effect of copper/graphite hybrid dopant on mechanical, thermal and electrical conductivity characteristics of unsaturated polyester resin. Acta phys Pol A 137:339–349

    Article  Google Scholar 

  11. Tekce HS, Kumlutas D, Tawman IH (2007) Effect of Particle Shape on Thermal Conductivity of Copper Reinforced Polymer Composites. J Reinf Plast Compos 26:113–121

    Article  CAS  Google Scholar 

  12. Aguilar JO, Quijano JRB, Aviles F (2010) Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films. Express Polym Lett 4(5):292–299

    Article  CAS  Google Scholar 

  13. Takada T, Ushiromura R, Fushiki T (2020) Fractal dimensional analysis on dispersion/aggregation state of MWCNT in poly(4-chloromethyl) styrene: effect of UV-induced polymer-MWCNT chemical bond formation and its influence on electrical conductivity of their composites. Int J Polym Anal Charact 25(4):252–261

    Article  CAS  Google Scholar 

  14. Alva G, Lin Y, Fang G (2018) Thermal and electrical characterization of polymer/ceramic composites with polyvinyl butyral matrix. Mater Chem Phys 205:401–415

    Article  CAS  Google Scholar 

  15. Bishay IK, Abd-El-Messieh SL, Mansour SH (2011) Electrical, mechanical and thermal properties of polyvinyl chloride composites filled with aluminum powder. Mater Des 32:62–68

    Article  CAS  Google Scholar 

  16. Saleh M, Al-Hajri Z, Popelka A, Zaidi SJ (2019) Preparation and characterization of alumina HDPE composites. Materials 13(1):250. https://doi.org/10.3390/ma13010250

    Article  CAS  Google Scholar 

  17. Tang LC, Wan YJ, Yan D, Pei YB, Zhao L, Li YB, Wu LB, Jiang JX, Li GQ (2013) The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27

    Article  CAS  Google Scholar 

  18. Zhou S, Hrymak AN, Kamal MR (2018) Effect of hybrid carbon fillers on the electrical and morphological properties of polystyrene nanocomposites in microinjection molding. Nanomaterials 8:779. https://doi.org/10.3390/nano8100779

    Article  CAS  PubMed Central  Google Scholar 

  19. Yuan S, Xu H, Gu H (2007) Fractal analysis of polypropylene composite filled with nano-calcium carbonate. J Appl Polym Sci 110:1955–1960

    Article  Google Scholar 

  20. Liang JZ (2018) Relationship between fractal dimensions of fracture surface and impact toughness of polycaprolactone/nano-CaCO3 composites. Adv Polym Technol 37(8):1–8

    Google Scholar 

  21. Anane-Fenin K, Akinlabi ET, Perry N (2020) A method for the quantification of nanoparticle dispersion in nanocomposites based on fractal dimension. In: Awang M, Emamian S, Yusof F (eds) Advances in material sciences and engineering. Springer, Singapore, pp 555–564

    Chapter  Google Scholar 

  22. Boudenne A, Mamunya Y, Levchenko V, Garnier B, Lebedev E (2015) Improvement of thermal and electrical properties of Silicone-Ni composites using magnetic field. Eur Polym J 63:11–19

    Article  CAS  Google Scholar 

  23. Eichner E, Heinrich S, Schneider GA (2018) Influence of particle shape and size on mechanical properties in copper-polymer composites. Powder Technol 339:39–45

    Article  CAS  Google Scholar 

  24. Aldemir E, Özdemir H, Sarı Z (2018) An improved gray line profile method to inspect the warp–weft density of fabrics. J Text I 110(1):105–116

    Google Scholar 

  25. Mandelbrot BB (1983) The fractal geometry of nature. Freeman, New York

    Book  Google Scholar 

  26. Mandelbrot BB, Passoja DE, Paullay AJ (1984) Fractal character of fracture surface of metal. Nature 308:721–722

    Article  CAS  Google Scholar 

  27. Beech M (1987) Are lynds dark clouds fractals? Astrophys Space Sci 133:193–19

    Article  Google Scholar 

  28. So GB, So HR, Jin GG (2017) Enhancement of the Box-Counting Algorithm for fractal dimension estimation. Pattern Recognit Lett 98:53–58

    Article  Google Scholar 

  29. Zhang M, Zhang W, Jiang N, Futaba DN, Xu M (2019) A general strategy for optimizing composite properties by evaluating the interfacial surface area of dispersed carbon nanotubes by fractal dimension. Carbon 154:457–465

    Article  CAS  Google Scholar 

  30. Akrami A, Nasiri N, Kulish V (2020) Fractal dimension analysis of Mg2Si particles of Al–15%Mg2Si composite and its relationships to mechanical properties. Results Mater 7:100118

    Article  Google Scholar 

  31. Florio BJ, Fawell PD, Small M (2019) The use of the perimeter-area method to calculate the fractal dimension of aggregates. Powder Technol 343:551–559

    Article  CAS  Google Scholar 

  32. Wang C, Wang S, Cheng H, Xian Y, Zhang S (2017) Mechanical properties and prediction for nanocalcium carbonate-treated bamboo fiber/high-density polyethylene composites. J Mater Sci 52:11482–11495

    Article  CAS  Google Scholar 

  33. Image J, Box-Counting Method, https://imagej.nih.gov/ij/plugins/fraclac/FLHelp/BoxCounting.htm, Accessed 14 Aug 2020

  34. Liang X, Li W (2016) Fractal and digital image processing to determine the degree of dispersion of carbon nanotubes. J Nanopart Res 18:136–146

    Article  Google Scholar 

  35. Liu X, Wang C, Deng Y, Cao F (2016) Computation of fractal dimension on conductive path of conductive asphalt concrete. Constr Build Mater 115:699–704

    Article  CAS  Google Scholar 

  36. Jager KM, McQueen DH (2001) Fractal agglomerates and electrical conductivity in carbon black polymer composites. Polymer 42:9575–9581

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the moral support of the TÜBİTAK SAGE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemal Yaman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaman, K. Fractal characterization of electrical conductivity and mechanical properties of copper particulate polyester matrix composites using image processing. Polym. Bull. 79, 3309–3332 (2022). https://doi.org/10.1007/s00289-021-03665-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03665-2

Keywords

Navigation